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Abstract. The presence of Discrete Absorption Components (DACs) or Satellite
Absorption Components (SACs) is a very common phenomenon in the atmospheres of hot
emission stars (Danezis et al. 2003; Lyratzi & Danezis 2004) and result to the complex line
profiles of these stars. The shapes of these lines are interpreted by the existence of two or
more independent layers of matter nearby a star. These structures are responsible for the
formation of a series of satellite components for each spectral line. Here we will present a
model reproducing the complex profile of the spectral lines of Oe and Be stars with DACs
and SACs (Danezis et al. 2003; Lyratzi & Danezis 2004). In general, this model has a line
function for the complex structure of the spectral lines with DACs or SACs and include a
function L that considers the kinematic (geometry) of an independent region. In the cal-
culation of the function L we have considered the rotational velocities of the independent
regions, as well as the random velocities within them. This means that the new function of
L is a synthesis of the rotational distribution and a physical Gaussian. Finally, we calculate
the optical depth (ξ) and the column density (d) of each independent density region.
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1. Introduction

One of the most important phenomena in
the spectra of hot emission stars is the
DACs (Discrete Absorption Components)
phenomenon (Peton 1974; Underhill 1975;
Lamers et al. 1982; Sahade et al. 1984; Sahade
& Brandi 1985; Hutsemékers 1985; Danezis
1984, 1987; Danezis et al. 1991, 2003).

DACs are discrete but not unknown ab-
sorption spectral lines. They are spectral lines
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of the same ion and the same wavelength as
a main spectral line, shifted at different ∆λ,
as they are created in different density re-
gions which rotate and move radially with dif-
ferent velocities (Danezis et al. 2003; Lyratzi
& Danezis 2004). DACs are lines, easily ob-
served, in the spectra of Be stars of luminos-
ity class III, because the regions that give rise
to such lines rotate with low velocities and
move radially with high velocities. However,
if the regions that give rise to such lines ro-
tate with large velocities and move radially
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with small velocities, the produced lines are
much broadened and little shifted. As a re-
sult they are blended among themselves as
well as with the main spectral line and thus
they are not discrete. In such a case the name
Discrete Absorption Component is inappropri-
ate and we use only the name SACs (Satellite
Absorption Components).

Danezis et al. (1991, 1998, 2000a,b,c,
2002a,b, 2003) and Laskarides et al. (1992a,b)
proposed a new model to explain the complex
structure of the density regions of hot stars,
where the spectral lines that present SACs or
DACs are created.

The main hypothesis of this model is that
the atmospherical region where a specific line
is created is not continuous, but it is composed
of a number of successive independent absorb-
ing density regions, a number of emission re-
gions and an external general absorption re-
gion.

2. Description of the model

2.1. The line profile function

By solving the equations of radiation trans-
fer through a complex structure as the one de-
scribed, we conclude to a function for the line’s
profile, able to give the best fit for the main
spectral line and its Satellite Components in
the same time.

The line profile function is the following:

Iλ = [Iλ0Π + Σ]e−xg (1)

where: Iλ0: is the initial radiation intensity, Π =∏
i

e−xai and Σ =
∑

j
S λe j (1 − e−xe j ), e−xai , e−xei ,

e−xg : are the distribution functions of the ab-
sorption, emission an general absorption lines
respectively.

This function Iλ does not depend on the
geometry of the regions which create the ob-
served feature.

2.2. The rotation model

One of the main hypotheses when we con-
structed the old version of the model (rota-
tion model) was that the line’s width ∆λ is

only a rotational effect and we consider spher-
ical symmetry for the independent density re-
gions, which create the satellite components.
This means that the random velocities were
very low and they did not contribute to the
line’s broadening. In such a case the function
(1) becomes:

Iλ = [Iλ0ΠR + ΣR]e−Lgξg (2)

where: Iλ0: is the initial radiation intensity,
ΠR =

∏
i

e−Liξi and

ΣR =
∑

j
S λe j

(
1 − e−Le jξe j

)
,

Li, Le j, Lg: are the distribution functions of the
absorption coefficients kλi, kλe j, kλg respec-
tively. ξ is the optical depth, S λe j: is the source
function, which, at the moment when the spec-
trum is taken, is constant.

In this case we can calculate that L is the
following function:

L (λ) =

θ0∫

−θ0

R cos θ[P1 (λ) − P2 (λ)]dθ

where R is the radius of the spherical density
region,
P1 (λ) =

arctan [λ−λlab(1−z0 cos θ)]
λlabz0 cos θ and P2 (λ) =

arctan [λ−λlab(1+z0 cos θ)]
λlabz0 cos θ

where λlab is the laboratory wavelength of the
spectral line produced by a particular ion and

z0 =
∆λrotation

λlab
=

Vrotation

c

where ∆λrotation is the width and Vrotation the ap-
parent rotational velocity of the i density shell
of matter.

The polynomial P (λ) = P1 (λ) − P2 (λ)
can be well approximated by the polynomial
f (λ), where

f (λ) =

{
1, i f |λ − λ0| < ρ
0, i f |λ − λ0| ≥ ρ , where

ρ =
λ0z0 cos θ

1 − z2
0 cos2 θ
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Fig. 1. The best fit is not just the graphical composition of some distribution functions. The reproduced
feature is the result of the final function of the model. The Mg II line profile of the star HD 45910, which
presents DACs and the star HD 41335, which presents SACs are produced in the same way. The only
difference between them is that the components of HD 41335 are much less shifted and thus they are
blended among themselves. The black line presents the observed spectral line’s profile and the gray one
the model’s fit. The differences between the observed spectrum and its fit are some times hard to see, as
we have accomplished the best fit. We also present all the components which contribute to the observed
features, separately.

λ0 is the observed wavelength of the center of
the spectral line, λ0 = λlab + ∆λrad, and ∆λrad
is the radial Doppler shift:

∆λrad

λlab
=

Vrad

c

Thus, for

|λ − λ0| < ρ =
λ0z0 cos θ0

1 − z2
0 cos2 θ0

(where the values of λ are taken in the wave-
length range we want to reproduce) and if θ ≤
θ0, then P(λ) = 1 and the distribution L(λ)
yields:

L (λ) �
θ0∫
−θ0

R cos θdθ.

We normalize for R = 1 and we have:

L (λ) �
θ0∫
−θ0

cos θdθ = [sin θ]θ0
−θ0

= 2 sin θ0. We

normalize and we have:
L (λ) � sin θ0 =

√
1 − cos2 θ0

By solving the equation

∆λrotation =
λ0z0 cos θ0

1 − z2
0 cos2 θ0

we have

cos θ0 =
−λ0 ±

√
λ2

0 + 4∆λ2
rotation

2∆λrotationz0

As θ0 lies between −π/2 and π/2 and
cosθ0 ≥ 0 we have

cos θ0 =
−λ0 +

√
λ2

0 + 4∆λ2
rotation

2∆λrotationz0
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If

cos θ0 =
−λ0 +

√
λ2

0 + 4∆λ2
rotation

2∆λrotationz0
< 1

then L (λ) =
√

1 − cos2 θ0 and
if

cos θ0 =
−λ0 +

√
λ2

0 + 4∆λ2
rotation

2∆λrotationz0
≥ 1

then L (λ) = 0.
The spectral line’s profile, which is formed

by the i density shell of matter, must be accu-
rately reproduced by the function e−Liξi by ap-
plying the appropriate values of Vroti , Vradi and
ξi.

Using the best model’s fit for a complex
spectral line, we can calculate the apparent ra-
dial velocity (Vradi ), the apparent rotational ve-
locity (Vroti ) and the optical depth (ξi) of the
region in which the main spectral line and its
SACs are created.

3. The new modeling approach

In the present work we propose a new approach
of the problem, as we also consider the param-
eter of random velocities in the calculation of
the distribution function L. This new L is a syn-
thesis of the rotational distribution Lr that we
had presented in the old rotational model and a
Gaussian. This means that the new L has two
limits, the first one give us a Gaussian and the
other the old rotational Lr.

3.1. The new calculation of the
distribution functions L

Let us consider a spherical shell and a point Ai
in its equator.

If the laboratory wavelength of a spectral
line that arises from Ai is λlab, the observed
wavelength will be λ0 = λlab + ∆λrad

If the spherical density region rotates, we
will observe a displacement ∆λrot and the new
wavelength of the center of the line λi is:
λi = λ0 ± ∆λrot and ∆λrot = λ0z sinϕ, z = Vrot

c ,
Vrot is the rotational velocity of the point Ai.
This means that

λi = λ0 ± λ0z sinϕ = λ0 (1 ± z sinϕ) and if
− π2 < ϕ < π

2 then λi = λ0 (1 − z sinϕ)
If we consider that the spectral line profile

is a Gaussian distribution we have:

P (λ) =
1√
2πσ

e
−
[
λ−κ
σ
√

2

]2

(3)

where κ is the mean value of the distribution
and in the case of the line profile it indicates
the center of the spectral line that arises from
Ai. This means that:

P (λ) =
1√
2πσ

e
−
[
λ−λ0(1−z sinϕ)

σ
√

2

]2

=

=
1√
2πσ

e−
[λ−λ0(1−z sinϕ)]2

2σ2

The distribution function for all the semi-
equator is:

L (λ) =

π
2∫

− π
2

1√
2πσ

e−
[λ−λ0(1−z sinϕ)]2

2σ2 cosϕdϕ

If we set sinϕ = x and u =
λ−λ0(1−zx)√

2σ
, then

L (λ) = 1
λ0z
√
π

λ−λ0(1−zx)√
2σ∫

λ−λ0(1+zx)√
2σ

e−u2
du

L (λ) =
1

λ0z
√
π

(Q1 − Q2)

Q1 =

λ−λ0(1−zx)√
2σ∫

0
e−u2

du and

Q2 =

λ−λ0(1+zx)√
2σ∫

0
e−u2

du

These two integrals have the form of a

known integral erf(x): er f (x) = 2
π

x∫
0

e−u2
du

So:

L (λ) =
1

2λ0z
[
er f1 − er f2

]
(4)
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where:

er f1 = er f
(
λ − λ0 (1 − zx)√

2σ

)

and

er f2 = er f
(
λ − λ0 (1 + zx)√

2σ

)

The distribution function from the semi-
spherical region is:

L f (λ) =
1

2λ0z

π
2∫

− π
2

[
er f f 1 − er f f 2

]
cos θdθ (5)

where:

er f f 1 = er f
(
λ − λ0√

2σ
+

λ0z√
2σ

cos θ
)

and

er f f 2 = er f
(
λ − λ0√

2σ
− λ0z√

2σ
cos θ

)

(Method Simpson)
This L f inal (λ) is the distribution that re-

places the rotation distribution L that Danezis
et al. (2003) proposed.

4. Discussion

In the proposed distribution an important factor
is m =

λ0z√
2σ

. This factor indicates the kind of
the distribution that can fit the line profile.

1. If m � 3 we have a mixed distribution. The
line broadening is an effect of two equal
reasons: (a) the rotational velocity of the
spherical region and (b) the random veloc-
ities of the ions.

2. If m � 500 the line broadening is only an
effect of the rotational velocity and the ran-
dom velocities are very low. In this case the
profile of the line is the same with the pro-
file that we can produce using the Danezis
et al. (2003) rotation model.

3. If m < 1 the line broadening is only an ef-
fect of random velocities and the line dis-
tribution is Gaussian.

4.1. The column density

An important point of our model is the calcula-
tion of the column density. Lets start from the

definition of the optical depth: τ =
s∫

0
kρds,

where τ is the optical depth (no units), k is the
absorption coefficient ( cm2

gr ), ρ is the density of
the absorbing region ( gr

cm3 ) and s is the geomet-
rical depth (cm).

In the model we set k = LΩ, so

τ =
s∫

0
LΩρds,

where L is the distribution function of the
absorption coefficient k and has no units, Ω

equals 1 and has the units of k (Ω = 1 cm2

gr ).
We consider that for the moment of the ob-

servation and for a significant ion, k has a sig-
nificant, constant value, so k (and thus L and
Ω) may come out of the integral. So:

τ = L
s∫

0
Ωρds. We set ξ =

s∫
0

Ωρds and τ be-

comes τ = Lξ

4.1.1. Absorption lines

About every one of ξ (henceforth called ξi), we
have:

ξi =

s∫

0

Ωρds⇒ ξi = Ω

s∫

0

ρds⇒

ξi

Ω
=

s∫

0

ρds

We set σi =
ξi
Ω

=
s∫

0
ρds. As Ω = 1 cm2

gr , it

contributes only to the units and σi takes the
value of ξi.

For each λi along the spectral line, we ex-
tract a σi from each ξi. The program we use
calculates the ξi for the center of the line. This
means that from this ξi we can measure the re-
spective σi.

If we add the values of all σi along the
spectral line then we have σ =

∑
i
σi (in gr

cm2 ),
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which is the surface density of the absorbing
matter, which creates the spectral line.

If we divide σ with the atomic weight of
the ion which creates the spectral line, we
extract the number density of the absorbers,
meaning the number of the absorbers per
square centimeter (n = σ

AW (in cm−2)).
This number density corresponds to the en-

ergy density which is absorbed by the whole
matter which creates the observed spectral line
( E

AW (in erg
cm2 )) and which is calculated by the

model.
It is well known, that each absorber absorbs

the specific amount of the energy needed for
the transition which creates the specific line.
This means that if we divide the calculated en-
ergy density ( E

AW ) with the energy needed for
the transition, we obtain the column density (in
cm−2).

4.1.2. Emission lines

In the case of the emission lines we have to take
into account not only ξe, but also the source
function S , as both of these parameters con-
tribute to the height of the emission lines. So
in this case we have:

S ξe =
j
k

s∫

0

Ωρeds

where: j is the emission coefficient ( erg
gr·s·rad·A ),

k is the absorption coefficient ( cm2

gr ), ρe is the
density of the emitting region ( gr

cm3 ) and s is the
geometrical depth (cm).

We set k = LΩ where L is the distribu-
tion function of the absorption coefficient k and
has no units, Ω equals 1 and has the units of k
(Ω = 1 cm2

gr ) and j = LeΩe, where Le is the dis-
tribution function of the emission coefficient j
and has no units and Ωe equals 1 and has the
units of j (Ωe = 1 erg

gr·s·rad·Å ).
As we did in the case of the absorption

lines, we may consider that Ω may come out
of the integral. So:

S ξe =
j
k

s∫

0

Ωρeds =
LeΩe

LΩ

s∫

0

Ωρeds =

=
LeΩe

LΩ
Ω

s∫

0

ρeds =
LeΩe

L

s∫

0

ρeds

As in the model we use the same distribu-
tion for the absorption and for the emission (ro-
tation distribution) Le = L. So:

S ξe = Ωe

s∫

0

ρeds⇒ S ξe

Ωe
=

s∫

0

ρeds

We set σe =
S ξe
Ωe

=
s∫

0
ρeds.

As Ωe = 1 erg
gr·s·rad·Å , it contributes only to the

units and σe takes the value of S ξe.
For each λi along the spectral line, we ex-

tract a σi from each S ξe. The program we use
calculates the ξe for the center of the line and
the S . This means that from this ξe and S we
can measure the respective σi.

If we add the values of all σi along the
spectral line, we have σ =

∑
i
σi (in gr

cm2 ), which

is the surface density of the emitting matter,
which creates the spectral line. If we divide σ
with the atomic weight of the ion which cre-
ates the spectral line, we extract the number
density of the emitters, meaning the number of
the emitters per square centimeter (n = σ

AW (in
cm−2)). This number density corresponds to the
energy density which is emitted by the whole
matter which creates the observed spectral line
( E

AW (in erg
cm2 )) and which is calculated by the

model. It is well known, that each emitter emits
the specific amount of the energy needed for
the transition which creates the specific line.
This means that if we divide the calculated en-
ergy density ( E

AW ) with the energy needed for
the transition, we obtain the column density (in
cm−2).
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