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The DACs and SACs phenomena 

•  DACs are discrete but not unknown absorption spectral lines. 
They are spectral lines of the same ion and the same 
wavelength as a main spectral line, shifted at different Δλ, as 
they are created in different density regions which rotate and 
move radially with different velocities (Danezis et al. 2003a).  

•  DACs are lines, easily observed, in the spectra of Be stars of 
luminosity class III, because the regions that give rise to such 
lines, rotate with low velocities and move radially with high 
velocities.  

•  However, if the regions that give rise to such lines rotate with 
large velocities and move radially with small velocities, the 
produced lines are much broadened and little shifted. 

•  As a result they are blended among themselves as well as with 
the main spectral line and thus they are not discrete. In such a 
case the name Discrete Absorption Component is 
inappropriate and we use only the name SACs (Satellite 
Absorption Components). 



•  The best fit is not just the graphical 
composition of some distribution functions. The 
reproduced feature is the result of the final 
function of the model.  

•  The MgII line profile of the star AXMon (HD 
45910), which presents DACs and the star HD 
41335, which presents SACs are produced in the 
same way.  

•  The only difference between them is that the 
components of HD 41335 are much less shifted 
and thus they are blended among themselves.  

•  The thick line presents the observed spectral 
line's profile and the thin one the model's fit.  

•  The differences between the observed spectrum 
and its fit are some times hard to see, as we 
have accomplished the best fit.  

•  We also present all the components which 
contribute to the observed features, separately.  



The line function 

• Some years ago our group proposed a new model to explain the 
complex structure of the density regions of hot stars, where the 
spectral lines that present SACs or DACs are created  

• (Danezis et al. 1991, 1998, 2000a,b, 2002a, 2002b, 2003a), 
Laskarides et al. 1992a, 1992b), 

• The main hypothesis of this model is that the stellar envelope is 
composed of a number of successive independent absorbing 
density layers of matter, a number of emission regions and an 
external general absorption region  

• By solving the equations of radiation transfer through a complex 
structure, as the one described, we conclude to a function for the 
line’s profile, able to give the best fit for the main spectral line 
and its Satellite Components in the same time.  

 
 



 
The line profile function is the following:  

 

•                                                                                           (1) 

 

• where: 

• Iλ0: is the initial radiation intensity, 

• e-xai, e-xei, e-xg: are the distribution functions of the 
absorption, emission and general absorption lines 
respectively. 

• This function Iλ does not depend on the geometry of the 
regions which create the observed feature  
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The rotation model 

 • One of the main hypotheses when we constructed the old 
version of the model (rotation model), was that the line’s width  
is only a rotational effect and we considered spherical 
symmetry for the independent density regions.  

• This means that the random velocities were very low and they 
did not contribute to the line’s broadening. 

• In this case the above function is transformed and we take the 
following function: 
 

                                                                                                    (2) { } { }( ) { }gg
j

ejejej
i

ii LLSLII xxx lll -ú
û

ù
ê
ë

é
--+-= åÕ expexp1exp0



{ } { }( ) { } )2....(expexp1exp0 gg
j

ejejej
i

ii LLSLII xxx lll -ú
û

ù
ê
ë

é
--+-= åÕ

• where: 
• Ιλ0: is the initial radiation intensity, 
• Li, Lej, Lg: are the distribution functions of the absorption  
• coefficients kλi,  kλej,  kλg. 
• ξ is the optical depth, 
• Sλej: is the source function, which, at the moment when the 

spectrum is taken, is constant. 



• In this case we can calculate that L is the following function: 

 

 

 

 

• where R is the radius of the spherical density region, λlab is the 
laboratory wavelength of the spectral line produced by a 
particular ion and,  

 

 

 

• where Δλrotation is the width and Vrotation the apparent 
rotational velocity of the i density shell of matter. 
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• The polynomial  
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can be well approximated by the polynomial f(λ), where  
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• λ0 is the observed wavelength of the center of the spectral line,  

 

 

• and Δλrad is the radial Doppler shift   
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• Thus, for   

 

• and if ,  

• then P(λ)=1  

• and the distribution L(λ) yields: 

 

 

 

•  We normalize for R=1 and thus 

 

 

 

• We normalize and we have  
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By solving the equation  
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• If                                                                                                                 then   
                                                                           

 
 
 
 
 
 
 

• if                                                                                                                  then  
 
 
 
 

• The L(λ) is a function of Vrot (that we can take from the 
Δλrotation) and Vrad (That we can take from the λ0) 
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• Finally the spectral line’s profile, which is formed by the i 
density shell of matter, must be accurately reproduced by the 
function  by applying the appropriate values of Vroti, Vradi and 
ξi. 

  

• Using the best model’s fit for a complex spectral line, we can 
calculate the apparent radial velocity (Vradi), the apparent 
rotational velocity (Vroti) and the optical depth (ξi) of the 
region in which the main spectral line and its SACs are 
created. 



The new modeling approach  

In the present work we propose a new approach of the 
problem, as we also consider the parameter of random 
velocities in the calculation of the distribution function L. 
This new L is a synthesis of the rotational distribution Lr 
that we had presented in the old rotational model and a 
Gaussian. This means that the new L has two limits, the 
first one gives us a Gaussian and the other the old 
rotational Lr.  



The new calculation of the distribution functions L 
 

Let us consider a spherical shell and a point Ai in its equator. 
If the laboratory wavelength of a spectral line that arises from Ai is  
λlab, the observed wavelength will be λ0=λlab+Δλrad 
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The new calculation of the distribution functions L 
 If the spherical density region rotates, we will observe a 

displacement Δλrot and the new wavelength of the center of the line λi  
 

is:            where  
 
 
                                                              

where               is the observed rotational velocity of the point Ai. 
 
 
 
 
 
 

This means that   
 
and if                             then  
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If we consider that the spectral line profile is a Gaussian distribution 
we have: 
  
      
  
 
 
where κ is the mean value of the distribution and in the case of the 
line profile it indicates the center of the spectral line that arises from 
Ai. This means that: 
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for all the semi-equator we have 
 
  
 
 
If we make the transformation ,               and               
     
the above function (4) will be transformed and finally we have the 
function ( 5) : 
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The above integrals have the form of a known integral erf(x)  
 
 
 
that has the following properties:  
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                   (6) 
  
  
 
 

The distribution function from the semi-spherical region is: 
  
                                                                                

                    (7) 
 
 
 
 

 
(Method Simpson) 
 

This                           is the distribution that replaces the old 
rotational distribution L that our group proposed some years ago 
(Danezis et al 2001). 
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Discussion 
In the proposed distribution an important factor is  
  
This factor indicates the kind of the distribution that can fit the 
line profile. 
1. If                we have a mixed distribution. The line broadening 
is an effect of two equal reasons:  
a. The rotational velocity of the spherical region and  
b. The random velocities of the ions. 
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2. If                            the line broadening is only an effect of 
the rotational velocity and the random velocities are very 
low. In this case the profile of the line is the same with the 
profile that we can produce using the old rotation model 
(Danezis 2001, 2003).  

 

500@m



3. Finally,  if                   the line broadening is only an 
effect of random velocities and the line distribution is a 
Gaussian.  

1<m



The column density  

An important point of our study is the calculation of the column 
density from our model. 
 Lets start from the definition of the optical depth:  
where τ is the optical depth (no units), 
 
k is the absorption coefficient (              ), 
 
ρ is the density of the absorbing region (                 ), 
 
 
s is the geometrical depth (cm) 
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In the model we set                        , so  
where L is the distribution function of the absorption coefficient k 
and has no units, 
Ω equals 1 and has the units of k (                    ) 
 
We consider that for the moment of the observation and for a 
significant ion, k is constant, so k (and thus L and Ω) may come out  
 
of the integral. So: 
 
We set   
 
 
and τ becomes  
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Absorption lines 
 
For every one of ξ along the spectral line (henceforth called ξi)  
 
we have that: 
  
 
We set   
 
As                            contributes only to the units, σi takes  
 
the value of ξi  . 
For each of λi along the spectral line, we extract a σi from each 
ξi . The program we use calculates the ξi for the centre of the 
line. This means that from this ξi we can measure the respective 
σi  . 
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If we add the values of all σi along the spectral line then we have     
 

(                  ), 
 
 
which is the surface density of the absorbing matter, which creates 
the spectral line.  
  
If we divide σ with the atomic weight of the ion which creates the 
spectral line, we extract the number density of the absorbers, 
meaning the number of the absorbers per square centimetre 
 
 (                          (in                )).  
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This number density corresponds to the energy density which is 
absorbed by the whole matter which creates the observed spectral  
 
line (              (in               )) and which is calculated by the model.  
  
It is well known, that each absorber absorbs the specific amount of 
the energy needed for the transition which creates the specific line.  
This means that if we divide the calculated energy density               
 
(              ) with the energy needed for the transition, we obtain  
 
the column density (in               ). 
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Emission lines 
  
In the case of the emission lines we have to take into account not only 
ξe, but also the source function S, as both of these parameters 
contribute to the height of the emission lines. So in this case we have: 
 
 
 
where: j is the emission coefficient (                               ), 
 
 
k is the absorption coefficient (                    ) 
 
 
ρe is the density of the emitting region (                ) 
 
s is the geometrical depth (cm)  
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We set  
 
where L is the distribution function of the absorption coefficient k and 
has no units, 
Ω equals 1 and has the units of k (                    ) 
 
And  
 
where Le is the distribution function of the emission coefficient j and 
has no units, 
 
Ωe equals 1 and has the units of j 
 
As we did before, in the case of the absorption lines, we may consider 
that Ω may come out of the integral.  
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So: 
  
As in the model we use the same distribution for the absorption and 
for the emission                 .  
 
So: 
 
 
We set  
 
 
As                                                 contributes only to the units,  
 
σe takes the value of Sξe.  
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For each λi along the spectral line, we extract a σi from each Sξe. 
The program we use calculates the ξe for the center of the line and 
the S. This means that from this ξe and S we can measure the 
respective σi. 
 If we add the values of all σi along the spectral line then we have  
 
              (in              ),  
 
which is the surface density of the emitting matter, which creates the 
spectral line. If we divide σ with the atomic weight of the ion which 
creates the spectral line, we extract the number density of the 
emitters, meaning the number of the emitters per square centimetre 
 
       (in            ).  
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This number density corresponds to the energy density which is 
emitted by the whole matter which creates the observed spectral line 
 
 (                   (in                )) and which is calculated by the model.  
 
It is well known, that each emitter emits the specific amount of the 
energy needed for the transition which creates the specific line.  
 
This means that if we divide the calculated energy density(          )  
 
with the energy needed for the transition, we obtain the column  
 
density (in            ).  
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CIV doublet in the spectrum of the star HD93521 



C IV - REGION OF THE STAR HD 93521
 Time-scale changes of  the radial velocities  (Vrad) of the 5 independent 

satellite components
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C IV - REGION OF THE STAR HD 93521

 Time-scale changes of the rotational velocity (Vrot) of the5 independent 
satellite components
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