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The DACs and SACs phenomena

DACs are discrete but not unknown absorption spectral lines.
They are spectral lines of the same ion and the same
wavelength as a main spectral line, shifted at different A4, as
they are created in different density regions which rotate and
move radially with different velocities (Danezis et al. 2003a).

DAC:s are lines, easily observed, in the spectra of Be stars of
luminosity class III, because the regions that give rise to such
lines, rotate with low velocities and move radially with high
velocities.

However, if the regions that give rise to such lines rotate with
large velocities and move radially with small velocities, the
produced lines are much broadened and little shifted.

As a result they are blended among themselves as well as with
the main spectral line and thus they are not discrete. In such a
case the name Discrete Absorption Component is
inappropriate and we use only the name SACs (Satellite
Absorption Components).



T ! e The best fit is not just the graphical
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A \ f'i? function of the model.

o L,—-” Vo o The Mgll line profile of the star AXMon (HD

war = 45910), which presents DACs and the star HD
) 41335, which presents SACs are produced in the
e same way.

""""" g :;::.pfjlf . | * The only difference between them is that the
e ) components of HD 41335 are much less shifted
and thus they are blended among themselves.
LA e ﬁ.ﬂm o The thick line presents the observed spectral
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N \ | o The differences between the observed spectrum
| and its fit are some times hard to see, as we
V have accomplished the best fit.
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The line function

Some years ago our group proposed a new model to explain the
complex structure of the density regions of hot stars, where the
spectral lines that present SACs or DACs are created

(Danezis et al. 1991, 1998, 2000a,b, 2002a, 2002b, 2003a),
Laskarides et al. 1992a, 1992b),

The main hypothesis of this model is that the stellar envelope is
composed of a number of successive independent absorbing
density layers of matter, a number of emission regions and an
external general absorption region

By solving the equations of radiation transfer through a complex
structure, as the one described, we conclude to a function for the
line’s profile, able to give the best fit for the main spectral line
and its Satellite Components in the same time.



The line profile function is the following:

1, = |:I/10];[6Xp {_xai}+zS}Lej (l—eXp {_xej })} CXp {_ xg} (1)

where:

I,,: is the initial radiation intensity,

exi, exel eX8: qre the distribution functions of the

absorption, emission and general absorption lines
respectively.

This function I, does not depend on the geometry of the
regions which create the observed feature



The rotation model

 One of the main hypotheses when we constructed the old
version of the model (rotation model), was that the line’s width
is only a rotational effect and we considered spherical
symmetry for the independent density regions.

o This means that the random velocities were very low and they
did not contribute to the line’s broadening.

» [In this case the above function is transformed and we take the

following function.

[, = IoneXp{_Lifi}"'ZSzej(l_eXp{_Lejfej}) eXp{_Lgfg} (2)
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* Where:

* I, is the initial radiation intensity,
° Ll’ Lejy
* coefficients k;;, k; ot kﬂg’
* ¢ is the optical depth,

Lg: are the distribution functions of the absorption

Y Jejt is the source function, which, at the moment when the
spectrum is taken, is constant.



e [In this case we can calculate that L is the following function:

&
L(1)= j Rcos@

_00

arctan|1— 1, , (1 —Z, COS 6’)] —arctan[1— 1, , (1+z, cos 67)]
A2, COSO

}d& ..... (3)

* where R is the radius of the spherical density region, Alab is the
laboratory wavelength of the spectral line produced by a
particular ion and,

Z = Aﬂrotation _ I/rotation
0= —
Atab &

o where Alrotation is the width and Vrvetation the apparent
rotational velocity of the i density shell of matter.



0,
L(A)= I Rcos0
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o The polynomial

P( l) _ arctan[/l — A (1 — Z, COS 9)] — arctan[/l — A (1 + 2, COS 6?)]

A, ,z,c0s0

can be well approximated by the polynomial f(4), where

_LifA=Al<p Aoz, COS O
f(;t)_{o,ifi—ioz,o where — p =
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Az, cos @
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* A, 1s the observed wavelength of the center of the spectral line,
X’O — /Ilab T Aﬂ'md
* and A4,  is the radial Doppler shift
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A,z, cos 6,

Thus, for A—A|<p=
‘ d 1— 2z, cos” 6,

adif, @ < 6,

then P(4)=1

and the distribution L(4) yields:

)
L(1)= JR cos 0

_90

We normalize for R=I and thus
0,

L(1)= jcos 640 = [sin 9]?090 =2smé,

_00

We normalize and we have

L(1)=sin@, = \/l—cos2 o,
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By solving the equation AA

rotation =

2 2
-2z, cos” 6,

o ﬂ’O T \/ﬂ’é T 4A/liotati0n
2A/Ir0tati0nZO

cos b, =

As 0, lies between —n/2 and n/2, cosO, must be 20. So

o 2’0 + \/ﬂ% + 4A}“§0tation
2Aﬂ“r0tationZO

cosf, =
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o Finally the spectral line’s profile, which is formed by the i
density shell of matter, must be accurately reproduced by the
function by applying the appropriate values of V, ., V.5 and

rotp ra
S

» Using the best model’s fit for a complex spectral line, we can
calculate the apparent radial velocity (V,,;), the apparent
rotational velocity (V,,;) and the optical depth (S) of the
region in which the main spectral line and its SACs are
created.



The new modeling approach

In the present work we propose a new approach of the
problem, as we also consider the parameter of random
velocities in the calculation of the distribution function L.
This new L is a synthesis of the rotational distribution Lr
that we had presented in the old rotational model and a
Gaussian. This means that the new L has two limits, the
first one gives us a Gaussian and the other the old
rotational Lr.



The new calculation of the distribution functions L

Let us consider a spherical shell and a point A, in its equator.
If the laboratory wavelength of a spectral line that arises from A, is
A the observed wavelength will be 4,=4, ,+AZ_,

equator



The new calculation of the distribution functions L

If the spherical density region rotates, we will observe a
displacement A4, and the new wavelength of the center of the line A,

is: A=A, AL,  where AA  =A,zsm@

i I/rot — Aﬂ‘rot
c A,sing

where Vm . IS the observed rotational velocity of the point A,

This means that ﬂl- = /10 T /102 sme = 10 (1 +zsin (0)

and if —%<¢<% then Zi:ﬂ,o(l—ZSiIl(D)



If we consider that the spectral line profile is a Gaussian distribution
we have:

P(i)=— e

\N2TO

where K is the mean value of the distribution and in the case of the

line profile it indicates the center of the spectral line that arises from
A.. This means that.

| _V—lo (1-zsin co)T 1 [A-2 (1-zsing)P

P(ﬁ) = e o2 = e 20°
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for all the semi-equator we have

> _[/1—/10 (l—zsin(/))]2

_ j \/%0' e 20° cosdo.......(4)
£ A—=A, (l — Zx)
o2

the above function (4) will be transformed and finally we have the

-z |
If we make the transformation, SIM @ = X and u=

function (5) : A-y (1-2)
o2
L(A) = j “ du
/1 Z\/7 A=A (1+2)
o2
 A-2y(1-2) A=Ay (1+2)
1 o2 o2

L(/’t):lZ\/; j e du — Ie‘”zdu ...(5)
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The above integrals have t)lge form of a known integral erf(x)

2L
erf(x)z—je du
T
that has the following properties:

. ef(x)=—erf(x)
2. ef(0)=
3. erf(+ oo):l as lm erf(+ oo)zl

s, ef(-1)=-1
2 x’ x> x’
5. erf(x)zf[ —31'4‘52'—73'4‘]

1 -3 1-3-5
erf(x)=1 \/;x[ . + (2x2 )2 — (2x2 )3 +]




The distribution function from the semi-spherical region is:

2 ’ . Az (7)
f,wl 222[{{6}{ \/70' [O_cosﬁj ef( \fa [Gcosﬁﬂcosﬁdﬁ

(Method Simpson)

This L ﬁnal(ﬂ’) is the distribution that replaces the old

rotational distribution L that our group proposed some years ago
(Danezis et al 2001).



Discussion 1z
In the proposed distribution an important factor is m = \/ﬂ
20

This factor indicates the kind of the distribution that can fit the
line profile.

1. If m=3 we have a mixed distribution. The line broadening
is an effect of two equal reasons:

a. The rotational velocity of the spherical region and

b. The random velocities of the ions.
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2. 1f m=500 theline broadening is only an effect of
the rotational velocity and the random velocities are very
low. In this case the profile of the line is the same with the

profile that we can produce using the old rotation model
(Danezis 2001, 2003).
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3. Finally, if m < | the line broadening is only an
effect of random velocities and the line distribution is a
Gaussian.
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The column density

An important point of our study is the calculation of the column
density from our model.

S
Lets start from the definition of the optical depth: T = J‘ k,OdS
where T is the optical depth (no units), 0

2

k is the absorption coefficient ( cm

),

. . 5 g
p is the density of the absorbing region ( 3

cm

),

s is the geometrical depth (cm)



In the model we set  k =1L€ | so 7= jLdeS

where L is the distribution function of the absorption coefficient k
and has no units,

Q equals 1 and has the units of k ( Q =1

2
cm
)

ar
We consider that for the moment of the observation and for a
significant ion, k is constant, so k (and thus L and Q) may come out

of the integral. So: T = LI CQpods
y 0

We set & = IQ,OCZS
0

and Tt becomes T = Lé:



Absorption lines

For every one of ¢ along the spectral line (henceforth called <)

) Ky gl S
we have that: i = _[des =, = QIPdS — 5 = Ipds
0 0 0

S,

Weset O, = 2L = S
ol
2
As  Q(l s ) contributes only to the units, o, takes
gr
the value of ¢; .

For each of A, along the spectral line, we extract a o; from each
¢;. The program we use calculates the ¢, for the centre of the

line. This means that from this {; we can measure the respective

o; .



If we add the values of all 6, along the spectral line then we have

0220‘1. ( grz ),

cm

which is the surface density of the absorbing matter, which creates
the spectral line.

If we divide o with the atomic weight of the ion which creates the
spectral line, we extract the number density of the absorbers,
meaning the number of the absorbers per square centimetre

O

(n=—n  (in cm” )



This number density corresponds to the energy density which is
absorbed by the whole matter which creates the observed spectral

ok erg o
line ( AW (in . )) and which is calculated by the model.

It is well known, that each absorber absorbs the specific amount of
the energy needed for the transition which creates the specific line.
This means that if we divide the calculated energy density

( B ) with the energy needed for the transition, we obtain

AW
-2
the column density (in CHl ),



Emission lines

In the case of the emission lines we have to take into account not only

¢, but also the source function S, as both of these parameters
contribute to the height of the emission lines. So in this case we have:

jS
SE =21 Qp ds
£ k! P,

where: j is the emission coefficient ( €rg ),

gr-s-rad- A

2
k is the absorption coefficient (€M )

ar
p, is the density of the emitting region ( &7 )

3
cm

s is the geometrical depth (cm)



Weset Kk = L)

where L is the distribution function of the absorption coefficient k and
has no units, "’

Q equals 1 and has the units of k ( 2= 1=

)
ar

And ] = LeQe

where L, is the distribution function of the emission coefficient j and
has no units,

er
Q , equals 1 and has the units of j (€2, =1 & )
gr-s-rad- A

As we did before, in the case of the absorption lines, we may consider
that 2 may come out of the integral.



LO LO

S S LO, ¢
e [Qp,ds ==« Q) p,ds = ===
mgpes _([pes

| pods

0

jS
So: S&E ==|Qp ds=
0 G k! 0, 10

As in the model we use the same distribution for the absorption and
for the emission Le = .

S S S

so: 8¢, =Q,|p.ds = Se _ | p.ds
0 Qe 0
S S

Weset O, = gf: =£pedS

er
As Q. (=1 & ) contributes only to the units,
gr-s-rad- A

o, takes the value of Sce.



For each A; along the spectral line, we extract a o; from each S¢,.
The program we use calculates the ¢, for the center of the line and
the S. This means that from this ¢, and § we can measure the
respective o,

If we add the values of all o, along the spectral line then we have

oc=> o, 5=

cm

which is the surface density of the emitting matter, which creates the
spectral line. If we divide o with the atomic weight of the ion which
creates the spectral line, we extract the number density of the
emitters, meaning the number of the emitters per square centimetre

O

n=——
AW

(in cm 2 ).



This number density corresponds to the energy density which is
emitted by the whole matter which creates the observed spectral line

( E (in erg )) and which is calculated by the model.

2
It is vfﬂeWknown, th&lach emitter emits the specific amount of the
energy needed for the transition which creates the specific line.

This means that if we divide the calculated energy density( E )
with the energy needed for the transition, we obtain the coltbhn

density (in ).

cm



CIV doublet in the spectrum of the star HD93521
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Radial Velocities (Vrad) in Km/s

C IV -REGION OF THE STAR HD 93521

Time-scale changes of the radial velocities (Vrad) of the 5 independent

satellite components
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Rotational velocity (Vrot) in

Km/s

C IV -REGION OF THE STAR HD 93521

Time-scale changes of the rotational velocity (Vrot) of the5 independent

satellite components
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