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The GR model 
One of the main hypotheses when we constructed an old 
version of our model (rotation model), was that the line’s 
width is only a rotational effect and we considered 
spherical symmetry for the independent density regions.  

In a new approach of the problem we also consider the 
random velocities in the calculation of the distribution 
function L that we can detect in the line function.  
 
 
 
This new L is a synthesis of the rotational distribution Lr 
that we had presented in the old rotational model and a 
Gaussian that well defines the random velocities. This 
means that the new L has two limits, the first one gives us 
a Gaussian and the other the old rotation distribution Lr.  
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The new calculation  
of the distribution functions L 

Let us consider a spherical shell and a point Ai in its equator.  
If the laboratory wavelength of a  

spectral line that arises from  
Ai is  λlab, the observed wavelength will be λ0=λlab+Δλrad 
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If the spherical density region rotates, we will observe a displacement 
Δλrot and the new wavelength of the center of the line λi  
 
is:            where  
 
 
  
where               is the observed rotational velocity of the point Ai. 
 
 
 
 
 
This means that   
 
and if                             then  
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The calculation of the distribution functions L 



If we consider that the spectral line profile is a Gaussian, 
then we have: 
  
      
  
 
 
where κ is the mean value of the distribution and in the 
case of the line profile it indicates the center of the 
spectral line that arises from Ai.  
 
This means that: 
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For all the semi-equator we have 
 
  
 
 
If we make the transformation ,                
 
and                    
 
the above function (4) will be transformed and 
finally we have the function (5) : 
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The above integrals have the form of a known integral erf(x)  
 
 
 
that has the following properties:  
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                   (6) 
  
  
 
 

The distribution function from the semi-spherical region 
is: 
  
                                                                                

                    (7) 
 

 
(Method Simpson) 
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This  Lfinal(λ) is the distribution that replaces the old  
rotational distribution L that  

our group proposed some years ago (Danezis et al 2001). 



In the proposed distribution an important factor  
 
is  
  
This factor indicates the kind of the distribution that fits 
the line profile. 

s
l
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0 z

m =

3@m1. If                we have a mixed 
distribution. The line broadening is 
an effect of two equal reasons:  

Discussion 

a. The rotational velocity of  
the spherical region and  

b. The random velocities of the ions. 
 



500@m
2. If   m ≈ 500  the line broadening is only an effect of the  
rotational velocity and the random velocities are very low.  

In this case the profile of the line is the same with  
the profile that we can produce using the old rotation model  

(Danezis 2001, 2003).  
 

500@m



3.Finally, if m<1  the line broadening is only an  
effect of random velocities  

and the line distribution is a Gaussian.  



An important point of our study is the calculation of the 
column density from our model. 
 Lets start from the definition of the optical depth:  
 
 
 
where τ is the optical depth (no units), 
 
k is the absorption coefficient (        ), 
 
ρ is the density of the absorbing region (        ), 
s is the geometrical depth (cm) 
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The column density  
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In the model we set                        , so  
 
where L is the distribution function of the absorption coefficient k 
and has no units, 
Ω equals 1 and has the units of k (                 ) 
 
We consider that for the moment of the observation and for a 
significant ion, k is constant, so k (and thus L and Ω) may come out  
of the integral. So: 
 
 
We set   
 
 
and τ becomes  
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For every one of ξ along the spectral line (henceforth called ξi)  
 
we have that: 
  
 
We set   
 
 
As                            contributes only to the units, σi takes the value 
of ξi . 
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Absorption lines 

For each of λi along the spectral line, we extract a σi from each ξi.   
The program we use calculates the ξi  for the centre of the line.  
This means that from this ξi we can measure the respective σi  . 



If we add the values of all σi along the spectral line then we 
have     

 
( in          ), 

 
which is the surface density of the absorbing matter, which 
creates the spectral line.  
  
If we divide σ with the atomic weight of the ion which creates 
the spectral line, we extract the number density of the 
absorbers, meaning the number of the absorbers per square 
centimetre 
 
(                     (in                )).  
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This number density corresponds to the energy density which 
is absorbed by the whole matter which creates the observed 
spectral  
line (          (   in           )) and which is calculated by the 
model.  
  
It is well known, that each absorber absorbs the specific 
amount of the energy needed for the transition which creates 
the specific line.  
This means that if we divide the calculated energy density              
(              ) with the energy needed for the transition, we  
 
obtain the column density (in               ). 
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In the case of the emission lines we have to take into account not 
only ξe, but also the source function S, as both of these parameters 
contribute to the height of the emission lines. So in this case we 
have: 
 
 
where: j is the emission coefficient (                         ), 
 
k is the absorption coefficient (           ) 
 
ρe is the density of the emitting region (                ) 
 
s is the geometrical depth (cm)  
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Emission lines 



We set  
 
where L is the distribution function of the absorption coefficient k 
and has no units, 
Ω equals 1 and has the units of k (                    ) 
 
And  
 
where Le is the distribution function of the emission coefficient j 
and has no units, 
 
Ωe equals 1 and has the units of j 
 
As we did before, in the case of the absorption lines, we may 
consider that Ω may come out of the integral.  
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So: 
  
As in the model we use the same distribution for the absorption 
and for the emission,              .  
 
So: 
 
 
We set  
 
 
As                                                 contributes only to the units,  
 
σe takes the value of  Sξe.  
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For each λi along the spectral line, we extract a σi from each Sξe. 
The program we use calculates the ξe for the center of the line and 
the S. This means that from this ξe and S we can measure the 
respective σi. 
 If we add the values of all σi along the spectral line then we have  
 
              (in              ),  
 
which is the surface density of the emitting matter, which creates 
the spectral line. If we divide σ with the atomic weight of the ion 
which creates the spectral line, we extract the number density of the 
emitters, meaning the number of the emitters per square centimetre 
 
       (in            ).  
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This number density corresponds to the energy density which is 
emitted by the whole matter which creates the observed spectral 
line 
 
 (               (in                )) and which is calculated by the model.  
 
It is well known, that each emitter emits the specific amount of the 
energy needed for the transition which creates the specific line.  
 
This means that if we divide the calculated energy density(          )  
 
with the energy needed for the transition, we obtain the column  
 
density (in            ).  
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The next presentation is about some 
important remarks and applications of  

GR model  



Thank you very much for your attention 


