Astron. Astrophys. Suppl. Ser. 72, 497-504 (1988) # The far UV spectrum of the Be star 88 Herculis E. Danezis and E. Theodossiou Department of Astrophysics-Astronomy and Theoretical Mechanics, University of Athens, Panepistimiopolis, Athens, 157 83, Greece Received March 16, accepted June 25, 1987 Summary. — In this paper, hereafter called Paper I, we give a detailed list of line identifications of the far UV spectrum of the Be star 88 Her in the wavelength range $\lambda\lambda$ 1100-2100 Å from a spectrum recorded in 1984, May 23 with the International Ultraviolet Explorer. The spectrum is crowded by shell absorption lines, mostly those of singly ionized iron peak elements. Key words: Be stars — UV radiation — lines: identification. #### 1. Introduction. In 1960 Bidelman and Svolopoulos announced the presence of hydrogen emission and shell lines on spectrograms of 88 Herculis (HD 162732) taken in 1959 and classified the object as a Be star. Herman and Duval (1962) found that the emission was present on their lowdispersion spectrograms taken from June 1955 to September 1958. Harmanec et al. (1972a, 1974b) from a study of the radial velocities of the hydrogen lines suggested that 88 Her is probably a single-line spectroscopic binary with a period of 87 days. Doazan (1973) announced long-term variations of emission and shell lines of the star and published additional velocity data. All these results led to an increasing interest in the object. Svolopoulos (1973) published equivalent widths and central intensities of the HI lines measured on several spectrograms from 1970 and 1971. Haupt (1974) published three UBV measurements of 88 Her from 1968-1969 and appealed to photometrists to look for possible eclipses of the components. Intense UBV photoelectric observations of 88 Her performed from 1972 to 1977 at Brno and Hvar observatories, and from 1975 at Bologna and Chiran, showed that 88 Her is a variable star but not an eclipsing binary (Harmanec et al., 1978). Hirata (1978) compared long-term variations of 88 Her to those of Pleione. Additional UBV measurements were published by Magalashvili and Jumsishvili (1980) and by Baldinelli et al. (1981). Doazan et al. (1982a, b) reviewed all the observational data available for the star and described quantitatively the various types of the changes observed. Barylak and Doazan (1986) and Doazan et al. (1986) described the luminosity and colour variations through phase changes from the far UV to the visual spectral regions. This paper-hereafter called Paper I — is the first of a series of two papers devoted to the study of the far UV spectrum of 88 Herculis. In Paper II we will give the identification list of the spectral lines which are present in the spectral range $\lambda\lambda$ 2000-3000 Å and the general conclusions that may be derived from the measured radial velocities in the whole range $\lambda\lambda$ 1100-3000 Å. ### 2. Observational data and their reduction. The high resolution far UV spectrum of 88 Her analysed in this paper (SWP 23079) has been obtained in 1984, May 23 with the International Ultraviolet Explorer satellite (IUE) by Doazan at the Villafranca Satellite Tracking Station of the European Space Agency (VILSPA). The line-identifications were performed on the basis of the multiplet tables of Moore (1968) and Kelly and Palumbo (1979). In this paper we present two tables. Table I gives the list of absorption lines observed in the spectrum of 88 Her. The successive columns in table I give: - 1. The measured wavelength in Å for the principal ions. - 2. The laboratory wavelength. Send offprint requests to: E. Danezis. 49 1988A&AS...72..497D - 3. The identification of the principal ions contributing to the line. - 4. The multiplet number. - 5. The intensity (Kelly-Palumbo, 1979). - 6. The radial velocity, measured at the line center. - 7. Remarks: indicating the presence of blends and reseau marks (O). The precision of the observed line position is limited by the IUE resolution (± 0.1 Å and more) and by the severe blending due to the crowding of the lines. Because the shell absorption lines are very narrow it is not possible to distinguish between shell and interstellar lines. Table II gives the strong, well-defined lines which are present in the spectrum that we were not able to identify unambiguously. We also give the corresponding ions which may possibly produce these lines around these wave-lengths. A great number of these lines is unclassified. ### 3. Description of the spectrum. The far UV spectrum of 88 Her presents lines arising from a broad range of ionization, CI, OI, NI, MgI to highly ionized species such as SiIV and possibly CIV. NV seems to be absent or blend with the MgII unclassified lines ($\lambda\lambda$ 1239.925 and 1240.3947 Å) and NI [5]. The singly ionized elements dominate the spectrum mainly FeII, NiII. The strongest lines of FeIII are present (multiplets 34, 52, 62 and 68). We did not detect any emission line in the far UV spectrum of 88 Her. Broad absorption wings are observed for the SiIV resonance lines, which are blended with the lines SI λ 1392.587 [1] and NiII λ 1393.33 Å. Broad absorption wings are suspected for the CIV resonance lines, which are blended with the sharp FeIII [84] lines ($\lambda\lambda$ 1547.640, 1550.196, 1550.862, 1551.377 Å). #### 4. Conclusions. This paper presents a complete line-list of the far UV spectrum of 88 Her in the range $\lambda\lambda$ 1100-2100 Å. Because this star is known to be variable, this list may be used as a reference for future variability studies. The detailed analysis of the radial velocities measured in the whole spectral range $\lambda\lambda$ 1100-3000 Å will be given in Paper II. ### Acknowledgements. We wish to thank very much Dr. V. Doazan for suggesting this work, for the support she has given to this project, and for her critical reading and remarks of this paper. Also, we wish to thank very much Prof. P. Laskarides for many useful comments. This investigation was started at the Observatory of Paris which we thank very much for all the support it gave us, continued and completed at the University of Athens. #### References BALDINELLI, L., FERRI, A., GHEDINI, S.: 1981, Inf. Bul. Var. Stars 1993. BARYLAK, M., DOAZAN, V.: 1986, Astron. Astrophys. 159, 65. BIDELMAN, W. P., SVOLOPOULOS, S. N.: 1960, Publ. Astron. Soc. Pac. 72, 129. DOAZAN, V.: 1973, Astron. Astrophys. 27, 395. DOAZAN, V., HARMANEC, P., KOUBSKY, P., KRPATA, J., ZDARSKY, F.: 1982a, Astron. Astrophys. Suppl. Ser. 50, 481. DOAZAN, V., HARMANEC, P., KOUBSKY, P., KRPATA, J., ZDARSKY, F.: 1982b, Astron. Astrophys. 115, 138. DOAZAN, V., THOMAS, R. N., BARYLAK, M.: 1986, Astron. Astrophys. 159, 75. HARMANEC, P., KOUBSKY, P., KRPATA, J.: 1972a, Bull. Astron. Inst. Czech 23, 218. HARMANEC, P., KOUBSKY, P., KRPATA, J.: 1972b, Astrophys. Lett. 11, 119. HARMANEC, P., KOUBSKY, P., KRPATA, J.: 1974, Astron. Astrophys. 33, 117. HARMANEC, P., HORN, J., KOUBSKY, P., KRIZ, S., ZDARSKY, F., PAPOUSEK, J., DOAZAN, V., BOURDONNEAU, B., BALDINELLI, L., GHEDINI, S., PAVLOVSKI, K.: 1978, Bull. Astron. Inst. Czech. 29, 278. HAUPT, H.: 1974, Inf. Bull. Var. Stars 928. HERMAN, R., DUVAL, M.: 1962, Ann. Astrophys. 25, 9. HIRATA, R.: 1978, Inf. Bull. Var. Stars 1496. MAGALASHVILL, N. L., KUMSISHVILI, J. I.: 1980, Inf. Bull. Var. Stars 1868. SVOLOPOULOS, S. N.: 1973, Bull. Astron. Ins. Czech 24, 167. TABLE I. — SWP 23079. | λmes | λlab | Ion | Mult. | Inten. | v(km·s ⁻¹) | Remarks | 1327.85 | 1327.9170 | NI | 11 | 25 | -13.56 | | |--------------------------------------|--|----------------|--------------|-------------|------------------------------------|-------------------|--------------------------------------|--|----------------|------------------|---------------------|------------------|------------------------------| | 1193.00 | 1193.009 | CI | 11 | 700 | 0.00 | CI[11] | 1328.60 | 1328.820
1329.099 | CI | 4 | 150
150 | -51.93
-31.59 | | | 1193.25 | 1193.240 | CI | 11 | 850
850 | 0.00
-27.50 | | 1328.95
1329.50 | 1329.577 | CI | 4 | 600 | -15.7 8 | | | 1193.35
1197.30 | 1193.460
1197.393 | CI
SiII | 11
5 | 100 | -23,25 | | 1334 . 30
1334 . 60 | 1334.532
1334.870 | CII
PII | 1
1 | 8 0 0
650 | -51.48
-60.69 | ъ | | 1199.50 | 1199.549
1200.223 | Ni
NI | 1 | 1000
900 | -12.49
-17.50 | | | 1335.707 | CII | 1 | 1000 | -44.94 | - | | 1200 . 15
1200 . 70 | 1200.711 | NI | i | 700 | 0.00 | | | 1341.465
1342.392 | SiIII
SiIII | 3 9
39 | 160
140 | | | | 1239.80
1240.25 | 1239.92
1240.39 | MgII
MgII | - | 250
200 | | | | 1343.388 | SiIII | 39 | 120 | | - | | 1243.05 | 1243.179 | NĬ | 5 | 550
200 | -28.95 | NI[5] | 1344.30 | 1344.340
1344.900 | PIII
PIII | 1
1 | 1000
650 | 0.00
+22.32 | b
Օ , Ե | | 1247.65 | 1248.860
1248.425 | CrIII
SiII | 6
8 | 200
150 | -50.52
-28.83 | | 1346.65 | 1346.873 | SiII | 7 | 100 | -49.02 | • | | 1248.30
1250.00 | 1250.089 | SiII | 13 | 100 | -21.36 | a: == [a] | 1347 . 10
1348 . 40 | 1347.239
1348.543 | CII
SiII | 2
7 | 500
100 | -28.95
-31.14 | | | 1250.50 | 1250.500
1251.164 | SII
SiII | 1
8 | 300
200 | 0.00 | SiII[13]
0 | 1349.95
1350.35 | 1350.057
1350.580 | SiII
SiII | 7
7 | 150
150 | -22.20
-51.09 | | | 1251.25 | 1251.420 | CrIII | 6 | 150 | -40.74 | Ъ | | 1351.6568 | ClI | 2 | 350 | -51.09 | | | 1252.40
1253.65 | 1252.610
1253.790 | CrIII
SII | 6
1 | 500
500 | -50.31
-33.51 | | 1352.58
1353.75 | 1352.635
1353.718 | SiII
SiII | 7
7 | 100
100 | -11.07
0.00 | | | 1259.40 | 1259.530 | SII | 1 | 500 | -30.96 | | 1354.18 | 1354.286 | CI | 43 | 500 | -22.14 | ь | | 1260.20
1260.30 |
1260.421
1260.542 | SiII
FeII | 4
9 | 500
400 | -52.38
-57.12 | | 1355.65 | 1355 . 5977
1355 . 825 | CI
OI | 1
42 | 100
750 | -42.06 | h | | 1260.40
1260.70 | 1260.736
1260.927 | CI | 9
9 | 250
200 | -80.94
-59.52 | CI[59],ъ
CI[9] | 1357.02 | 1357 | CI | 41 | 300 | -24.30 | СтIII [36] , ь | | 1260.95
1261.30 | 1261.122 | CI | 9 | 250 | -40.44 | | 1358.50
1359.15 | 1358.5123
1359.275 | CI | 1
40 | 60
200 | 0.00
-26.49 | ь | | 1261 .3 0
1261 .7 0 | 1261.552
1261.850 | CI
CrIII | 9
20 | 500
400 | -58.00
-38.04 | CI [9] | 1360.50 | 1360.870 | FeII | 111 | 100 | -81.60 | | | 1263.40 | 1263.610 | CrIII | 20 | 350 | -49.86 | | 1360.70 | 1360.718
1361.597 | MnIII
SiIII | 8
46 | 1000
160 | -4.30 | | | 1264 . 15
1264 . 50 | 1264.210
1264.737 | CrIII
SiII | 13
4 | 350
1000 | -14 . 22
-54 . 57 | | 12/0 77 | 1362.366
1362.771 | SiIII
FeII | 38 | 100 | 10.15 | | | | 1265.001 | SiII | L. | 100 | | | 1363.20 | 1363.447 | ClI | 152
2 | 400
600 | -48.45
-52.80 | SiIII [36] | | 1266 . 10 | 1266.140
1266.419 | CrIII
CI | 5
58 | 150
100 | 0.00
-23.57 | | 1364.00
1364.40 | 1364.164
1364.575 | CI
FeII | 39
103 | 600 | -30.78
-41.76 | | | 1266.35
1266.50 | 1266.694 | FeII | 9 | 400 | -45.21 | b | 1365.80 | 1365.94 | CrIII | 36 | 240
70 | -30.75 | с п п[ж],япп[ж],ь | | 1267.25
1268.00 | 1267.437
1268.010 | FeII
CrIII | 9
9
5 | 500
250 | -42.60
0.00 | | 1368.40 | 1367.049
1368.60 | SiIII
CrIII | 46
36 | 140
1 50 | -43.83 | | | | 1269.110 | CrIII | 13
13 | 250
250 | 0.00 | | - • | 1369,430 | MnIII | 8 | 400 | | SiIII[46] | | 1271.10 | 1269.110
1271.235 | CrIII
FeII | 9 | 20 | -30.66 | | | 1370.200
1371.024 | NiII
FeII | 8
103 | 500
500 | -43.77
0.00 | Ъ | | 1271.85 | 1272.001
1272.638 | FeII
FeII | 9 | 500
300 | -35.37
-30.66 | | | 1371.647 | MnIII | 8 | 300 | | S1111 [67] | | 1272.50
1273.15 | 1273.310 | CrIII | 9
5
8 | 150 | -37.68 | | 1373.00
1373.95 | 1373.1163
1374.140 | ClI
NiII | 1
9 | 200
150 | -41.46 | S1III [67] | | 1274.00
1274.80 | 1274.109
1274.984 | C1
CI | 8
55 | 150
150 | -30.60
-42.36 | ъ | 1375.05 | 1375.172 | FeII | 103 | 200 | -26.16 | SiIII [67] | | 1275.00
1275.65 | 1275.145 | FeII | 55
9
9 | 300 | -35.28 | | 1379.80
1379.30 | 1379.870
1379.600 | PIII
Cli | 7
1 | 500
900 | -15.21
-65.49 | р | | 1275.65
1277.10 | 1275.801
1277.282 | FeII
CI | 9
7 | 400
700 | -35.28
-39.00 | CI[7] | 1381.18 | 1380.460
1381.111 | PIII
PIII | . 7
7 | 1000
1000 | +15.21 | raп[152],raп[8] | | 1277.45 | 1277.617 | CI | 7 | 1000 | -40.00 | FeII[9] | 1381.50 | 1381.633 | PIII | ŕ | 800 | -28.23 | اهيدانجائيسداما | | 1279.00
1279.05 | 1279.056
1279.229 | CI | 6
6 | 100
150 | -11.70
-39.87 | | 1383.65 | 1383.790 | CrIII | 35
20 | 250
25 | -30.36 | | | 1279.65 | 1279.898 | CI | 5 | 250 | -56.28 | | | 1387.948
1387.979 | SiIII
SiIII | 37
37 | 10 | | | | 1279.95
1280.35 | 1280 . 135
1280 . 333 | CI
CI | 5
5
2 | 200
700 | -42.18
0.00 | SiII[63] | 1200 /5 | 1387.994
1388.435 | SiIII
SI | 37
7 | ۶
9 5 0 | 0.00 | | | 1280.70 | 1280.892 | CI | 5 | 250 | -44.52 | 2222[23] | | 1389.6928 | ClI | 1 | 1000 | | _ | | 1282.25
1284.10 | 1282.484
1284.090 | Tilli
Crili | 2
12 | 125
200 | -56.1 5
0 . 00 | | 1389.80
1391.60 | 1389.957
1391.61 | ClI
CrIII | 1
35 | 900
150 | -32.37
0.00 | Ъ | | 1284.30
1287.00 | 1286.365 | Tiiii | 12
2 | 700 | 0.00 | | 1392.60 | 1392.587 | SI | 7 | 650 | 0.00 | | | 1288.40 | 1287.050
1288.422 | CrIII
CI | 12
53 | 400
500 | -11.64
0.00 | ъ | | 1393.755
1396.5267 | SiIV
ClI | 1 | 1000
600 | | | | 1288.65
1289.15 | 1288.710
1289.299 | CI
Tilli | 52
2 | 100
500 | -12.00
-39.54 | Ъ | 1,00 05 | 1396.5267
1399.026 | NiII
CrIII | 8 | 80
150 | -19.26 | ь | | 1289.75 | 1289.977 | CI | 51 | 300 | -53.52 | ъ | | 1400.34
1402.770 | SiIV | 35
1 | 800 | | ь | | 1290.00
1291.35 | 1290.204
1291.594 | FeII
FeII | 88
87 | 300
300 | -46.50
-55.77 | MnIII[9] | 14,07.20 | 1407 • 1689
1409 • 1336 | CuII
SI | 88
6 | 15
125 | 0.00 | | | 1291.40 | 1291.640 | Tilli | 2 | 450 | -55 .7 7 | | 1410.90 | 1411.071 | NiII | 8 | 100 | | | | 1293.20 | 1293.228
1294.698 | Tilli
Tilli | 2
1 | 400
600 | 0.00
-27.81 | SiIII [4] | 1411.90 | 1411.9494
1412.834 | ŅΊ
FeII | 10
47 | 150
70 | -10.62
-38.22 | | | 1294.75 | 1294.919 | FeII | 87 | 240 | -37.08 | [11] | 1/13.50 | 1/13,699 | FeII | 69 | 770 | -42.45 | | | 1295.75
1295.95 | 1295.883
1296.088 | Tilli
Fell | 1
86 | 400
400 | -30.09
-32.40 | | 1414.20
1417.10 | 1414.440
1417.237
1417.744 | GaII
SiIII | 2
2 | 1000
260 | -50.91
-27.51 | | | 1296.70
1298.50 | 1296.726
1298.659 | Siiii
Tiiii | 4
1 | 280
1000 | 0.00
-32.27 | FeIII[87] | 1417.50 | 1417.744 | FeII
TiIII | 143 | 400
300 | -50.79 | | | 1298.80 | 1298.970 | Tilli | 1 | 800 | -34.65 | | | 1420.036
1421.631 | Tiii | 4
4 | 280 | | TiIII[4] | | 1299.80
1301.10 | 1299.984
1301.146 | FeII
SiIII | 86
1 | 10
280 | -41.55
0.00 | b
b | 1422.35 | 1422.405 | Tilli
Tilli | 4 | 650
700 | -10.53
-40.05 | FeII [47] | | 1301.65 | 1301.87 | PII | 4 2 | 200 | -50.73 | Ъ | 4101 50 | 1424.140
1424.716 | FeII | 47 | 70 | -50.55 | SiIII [62] | | 1302.17
1302.80 | 1302.168
1302.863 | OI
SI | 2
9 | 1000
80 | 0.00
-13.80 | 0 , b | 1430.55 | 1430.780 | FeII
FeII | 47
47 | 200
20 | -48.24
-39.84 | MnII [22] | | 1303.15 | 1303.320 | SiIII | 4 2 | 320
200 | -39.12 | C-1712 | 1431.70 | 1424.716
1430.780
1430.895
1431.597
1432.105
1432.530
1433.749 | CI | 65 | 100 | -23.04 | ъ | | 1304.25
1304.85 | 1304.47
1304.857 | PII
OI | 2 | 600 | -50.80
0.00 | SiII [3] | 1432.10 | 1432.105
1432.530 | CI | 65
65 | 75
50 | 0.00
-37.68 | b
b s a | | 1305,20 | 1305.480
1306.0286 | PII
OI | 2 | 350
200 | -64.35
0.00 | NiIII [13] | 1433.60 | 1433.749 | CaII | 7 | 200
160 | -31.38 | S1111[66] | | 1306.00
1309.25 | 1309.276 | SiII | 3 | 200 | 0.00 | | | 1436.166 | SiIII
SiIII | 61
52
66 | 140 | | | | 1309.30
1310.80 | 1309.34
1310.700 | CrIII
PII | 28
2 | 200
600 | 0.00 | NI [13] ,CI [49] | | 1436.724
1438.228 | SiIII | 66
66 | 80
40 | | 0 | | 1311.05 | 1310.9429 | NI | 13 | 150 | +20.61 | | | 17.38.702 | SiIII | 66 | 40 | | ~ | | 1313.35
1315.00 | 1313.464
1315.00 | CI
CrIII | 45
33 | 300
100 | -25.11
0.00 | CI [45.01]
b | 1441 60 | 1439.391
1441.732
1447.196 | SiIII | 66
3 | 40
1 0 0 | -27.00 | | | 1316.00 | 1315.918 | CI | 44 | 200 | +22.80 | CrIII[28],b | 1447.00 | 1447.196 | SiIII | 3 | 100 | -39.39 | | | 1317.05
1318.85 | 1317.220
1318.9981 | MiII
MI | 10
12 | 500
150 | -38.70
-31.83 | ъ | 1454.65
1455.00 | 1454.852 | niii
Tiiii | 7
6 | 200
1000 | -41.25
-45.36 | | | 1319.50
1320.50 | 1319.6760
1320.6858 | NI | 12 | 250
10 | -38.64
-40.90 | | .,,,, | 1455 • 194
1457 • 250 | SiIII | 60 | 100
10 | , | | | | 1321. 65 | CuII
CrIII | 148
28 | 30 | | | 1459.15 | 1457.1759
1459.311 | CuII
FeII | 99
193 | 300 | -32.88 | ъ | | 1322.65
1324.00 | 1322.83
1323.951 | CrIII
CII | 28
11 | 100
450 | -38.55
0.00 | CII[11],SI[11] | 1463.05 | 1463.336 | CI
FeII | 37 | 600
400 | -55•35
-18•42 | | | 1326.50 | 1326.643 | SI | 8 | 160 | -32.00 | NI [11] | 1464.95
1465.95 | 146 5. 043
146 6. 070 | CuII | 193
126 | 70 | -25.70 | | | 1327.40 | 1327.592 | TiIII | 4 | 550 | -45.21 | | 1467.20 | 1467.450 | CI | 3 6 | 350 | -51.12 | ъ | 500 | | | | | | | TABLE I (co | пппиеа) | | | | | |---|---|--------------------------------------|---------------------------------|---------------------------------------|--|--------------------------------------|---|---|--|--|----------------------------------| | 1467.60
1468.40
1470.05
1472.20
1473.65 | 1467.762
1468.410
1470.094
1472.231
1473.834 | NiII
CI
CI
CI
FeII
SI | 6
35
35
34
193
3 | 100
100
100
60
400
350 | -31.12
0.00
-30.60
0.00
-36.63 | | 1606.70 1606.834
1607.45 1607.723
1608.25 1608.456
1610.70 1610.921
1611.65 1611.763
1612.60 1612.802 | CuII 139 FeIII 118 FeII 43 FeII 118 FeII 43 | 300
600
700
300
450
400 | -25.00
-50.40
-37.29
-42.84
-20.46
-39.06 | CuIII [13]
O,b
FeIII [118] | | 1474 . 20
1481 . 70 | 1473.980
1474.38
1481.763
1485.024 | SI
CI
SiII | 3
34
12 | 125
450
90 | -36 .7 0
-12 . 15 | b | 1616.46 1616.60
1616.25 1618.470
1621.45 1621 685 | FeII 43 CuIII 13 FeII 8 FeII 8 | 150
500
600 | -39.00
-27.84
-39.25
-42.54 | | | 1485•30 | 1485.224
1485.513
1485.622 | SiII
SiII
SI | 12
15
4 |
30
100
150 | -42.42 | | 1623.05 1623.102
1625.25 1625.520
1625.85 1625.919
1626.15 1626.139
1627.05 1627.0498 | FeII 43
FeII 43
FeII 8 | 160
400
300 | 0.00
-51.69
0.00 | | | 1486.00
1487.10 | 1486.265
1487.120
1487.86 | FeII
SI
CrIII | 85
3
85
7 | 400
200
50 | -52.47
0.00 | | 1626.15 1626.139
1627.05 1627.0498
1628.25 1628.295 | CuII 13
SiI 29
CuIII 13 | 100
,20
150 | 0.00
0.00
-9.21 | | | 1492.50
1493.40 | 1492.100
1492.625
1493.640 | PIII
NI
FeIII | 7
4
85
4 | 500
620
600 | -24.12
-48.21 | | 1628.25 1628.295
1629.03 1629.155
1630.60 1630.82
1631.00 1631.120 | FeII 8
VII 18
FeII 8 | 600
200
600 | -22.10
-40.47
-22.10 | | | 1494.50
1498.55
1500.25 | 1494.669
1498.697
1500.437 | PI
TiIII
NiII | 3
7 | 620
600
200 | -32.10
-20.01
-36.00 | SiIII[36] | 1630.60 1630.82
1631.00 1631.120
1632.15 1632.166
1632.40 1632.668
1633.57 1633.51
1633.70 1633.907
1634.15 1634.345
1635.17 1635.389
1635.60 1635.860 | MiIII 17
FeII 43
VII 18 | 100
20
250 | 0.00
-49.62
-29.37 | | | 1501.55 | 1501.550
1501.870
1502.270 | PIII
SiIII
PIII | 6
36
6 | 700
180
1000 | 0.00
-53.91 | | 1633.70 1633.907
1634.15 1634.345
1635.17 1635.389 | FeII 43
FeII 8
FeII 68 | 300
400
700 | -36.72
-34.86
-38.52 | | | 1504.55
1505.00 | 1504.710
1505.100
1506.060
1509.101 | PIII
FeIII
SiIII
SiII | 6
85
72
11 | 900
650
120
100 | -33.90
-31.89 | b
b | 1636.10 1636.321
1637.22 1637.397
1637.55 1637.770 | VII 18
FeII 8
FeII 42
VII 18 | 200
600
300
500 | -47.70
-40.32
-32.97
-40.29 | MiII[6] | | 1510.60
1511.90
1514.70 | | NiII
SiII
ZnII | 6
11 | 75
50
120 | -49.65
-33.75
-9.90 | CI [64] | 1636.10 1636.321
1637.22 1637.397
1637.55 1637.770
1637.75 1637.930
1638.956
1639.20 1639.403
1640.00 1640.167
1640.60 1640.860
1641.55 1641.761
1642.05 1642.187
1642.30 1642.208 | VII 18
CuIII 22
FeII 8 | 100
150
600 | -32.97
-36.63
-36.60 | | | 1526.50
1531.10
1531.40 | 1526.707
1531.293
1531.644 | SiII
FeIII
FeIII | 5
2
84
84 | 500
400
550 | -9.90
-39.30
-37.23
-47.01 | 0,b | 1640.00 1640.167
1640.60 1640.860
1641.55 1641.761 | FeII 43
VII 18
FeII 68 | 240
300
500 | -29.25
-47.55
-38.50
-42.00 | | | 1531.70 | 1531.864
1532.51 | FeIII
PII
SiII | 84
1
2 | 450
700
1000 | -31.35
-29.34 | сш[11] , ош[%] | 1642.05 1642.187
1642.30 1642.208
1643.00 1643.03 | FeII 274
CuII 12
VII 18 | 100
1000
300 | +18.27
0.00 | 0 , b | | 1532.28
1535.08
1535.70
1536.35 | 1536.39 | ZnII
PII
PII | 5
1
1 | 200
1000
700 | 0.00
-48.84
0.00 | CuII [96] ,b
b | 1642.30 1642.208
1643.00 1643.03
1643.38 1643.576
1646.04 1646.182
1647.00 1647.159 | FeII 42
FeII 68
FeII 68 | 300
400
500 | -36.51
-25.50
-29.13 | | | 1537.30
1538.40
1539.05 | 1539,128 | PII
FeIII
FeIII | 1
84
84 | 700
650
550 | -40.98
-44.85
-13.62 | b
b | 1650.50 1650.704
1652.00 1652.010 | FeII 68
FeII 68
CuIII 12 | 400
400
150 | -29.13
-50.91
-36.36
0.00 | FeII[42] | | 1539.30
1539.70 | 1540.165 | FeIII
AlII
FeIII
CI | 84
10
84
64 | 300
800
450
160 | -35.07
-25.41 | ъ | 1652.30 1652.489
1654.05 1654.111
1654.30 1654.484
1654.90 1655.042 | FeII 42
FeII 68
FeII 42
FeII 68 | 10
100
160
20 | -32.67
-9.06
+32.67
-25.35 | CuIII[12] | | 1542.05
1542.15
1543.10
1543.45 | 1542.290
1543.144 | PII
PII
CuIII | 1
1
32 | 1000
400
250 | -23.34
-27.21
0.00
0.00 | ъ | 1655.10 1656.255
1656.75 1656.998
1657.25 1657.368 | CI 2
CI 2
CI 2 | 350
1000
300 | -28.98
-43.47
-21.70 | c1[5] | | 1,74,7•4,7 | 1543.610
1545.249
1546.120 | PII
CI
FeIII | 1
63
84 | 150
40
550 | 0.03 | | 1657.80 1657.891
1658.00 1658.113 | CI 2
CI 2
CuIII 12 | 300
300
100 | -18.09
-21.69 | , | | 1548.80 | 1547.640
1548.185
1548.867 | FeIII
CIV
CuIII | 84
1
32 | 550
1000
150 | -11.61 | | 1658.55 1658.771
1659.30 1659.483
1660.30 1660.53 | FeII 41
FeII 40
VII 109 | 300
300
80 | -39.78
-41.61
-35.52
-41.55 | | | 1550.10
1550.10 | 1550.196 | FeIII
FeII
CIV | 84
45
1 | 200
20
550 | -19.35
-30.96 | | 1003,05 1003,221 | FeII 41
FeII 42
FeII 40 | 10
10
300 | -34.40
-28.86
-30.66 | • | | 1550.60
1551.25 | 1551.377
1552.067 | FeJII
FeIII
FeIII | 84
84 | 550
250
550 | -50.31
-23.19 | CuII [118] | 1663.50 1663.600
1667.60 1667.66
1667.88
1670.00 1670.01 | VII 109
VII 109
VII 34
VII 109 | 150
100
50
100 | -18.03
-10.77 | MnIII[24] | | 1558.40
1558.50
1558.95 | 1558.690 | FeIII
FeII
FeII
FeII | 84
46
46
45 | 550
200
200
400 | -26.94
-38.49
-28.00 | | 1670.00 1670.140
1670.55 1670.786
1671.1168 | CuIII 19 AlII 2 SiII 23 | 250
1000
40 | -25.14
-41.31 | FeII [40] | | 1560.10 | 1560.260
1560.313 | FeII
CI
CI | 45
3
3 | 40
250
500 | -30.75
C.00
0.00 | SeI[7] | 1671.55 1671.680
1671.80 1671.886 | PI 2
CuIII 18
VII 17 | 540
250
150 | -19.74
-14.34
-34.08 | ъ | | 1561.25
1563.50
1565.25 | 1560.6702
1561.438
1563.788
1565.374 | CI
FeII
FeII | 3
45
46
44
45 | 1000
500
4 | -34.00
-55.65
-23.10 | CI [3] | 1673.30 1673.462
1674.18 1674.254
1674.50 1674.610 | FeII 102
FeII 41
FI 2 | 300
40
6 9 0 | -28.68
-12.54
-18.00 | SiIII [58]
FeII [40] | | 1565.70
1567.95
1569.50 | 1568.016
1569.674 | FeII
FeII
FeII | 44 | 400
160
240 | -22.98
-8.00
-32.49 | | 1676.70 1676.871
1677.30 1677.373
1679.20 1679.381 | FeII 41
CuIII 31
FeII 102 | 200
100
300 | -30.42
-12.51
-32.16 | , | | 1570,80 | 1570.242
1570.8104
1572.750
1573.825 | FeII
SiI
FeII | 45
41
45
45 | 400
1
20 | -32.46
0.00
-47.70 | 0. 777 [00] | 1679.70 1679.710
1681.35 1681.481
1684.45 1684.642 | PI 2
CuIII 18
CuIII 12
PI 6 | 900
150
250
360 | 0.00
-23.19
-35.61
-42.72
-19.56 | b
FeII[41] | | | | FeII
CrIII
FeII
FeII | 73
44 | 100
70
10 | -43.86
-51.45
-24.75 | CrIII [73] | 1685.75 1685.990
1686.10 1686.214
1686.30 1686.457 | CuIII 22
FeII 40 | 150
160
40 | -42.72
-19.56
-26.67
-24.90 | remţi | | 1574.00
1574.00
1580.40
1588.10 | 15/73.870
1574.768
1574.923
1577.166
1580.625
1581.274
1584.600
1584.949 | FeII
FeII
FeII | 45
45
44
44
73 | 400
20
500
160 | -28.53
-43.65
-36.03
-18.93 | CrIII [73]
CrIII [73]
GeII [3] | 1672.25 1672.440 1673.30 1673.462 1674.18 1674.254 1674.50 1674.610 1676.70 1676.871 1677.30 1677.373 1679.20 1679.321 1679.70 1679.321 1681.35 1621.421 1684.45 1684.642 1685.75 1685.990 1686.10 1686.214 1686.30 1686.457 1686.55 1686.692 1687.70 1687.134 1687.72 1687.897 | FeII 39
CuIII 12
MiIII 25
FeII 41 | 300
400
8 | 0.00
-30.21
-26.64 | b
FeII[102] | | 1,000,000 | | CrIII
FeII
SiI | 44
37 | 400
300
3 | -28.38
0.00 | NiII[6] | 1688.95 1689.051
1689.85 1689.828
1690.28 | CuIII 24
FeII 85
CrIII 71 | 100
200
300 | -17.76
-30.18 | | | 1588.10
1588.85
1590.45 | 1588.286
1588.87 | FeII
CrIII
SiI | 44
73
35 | 200
200
20 | -35.88
0.00
0.00 | | 1690.65 1690.781
1691.05 1691.289
1692.11 | FeII 85
FeII 41
VIJ 33
FiIII 16 | 160
160
100 | -23.07
-40.30 | | | 1593.45
1593.70
1595.15 | 1590.4768
1593.555
1593.758
1595.597 | CuIII
FeIII | 139
13
119 | 500
500
400 | -18.81
-9.39
-82.74 | | 1692.35 1692.51
1692.70 1692.89
1693.05 1693.09
1693.35 1693.477
1693.95 1693.497
1694.35 1694.481 | CrIII 71
VII 33 | 1000
600
100
10 | -28.35
-33.66
0.00
-21.24 | AII [33]
P | | 1600-15 | 1600.194
1601.211
1602.080
1602.588 | FeIII | 13
118
119
316 | 250
650
300
240 | 0.00
+37.47
0.00
-52.41 | FeIII[118] | 1693.95 1693.936
1694.35 1694.481
1696.25 1696.463 | FeII 85
FeIJ 41
PI 6
FeII 84 | 10
120
10 | 0.00
-23.01
-37.1/ | ***[27] | | 1602.80 | 1602.984
1606.026 | CI | 63
119 | 200
200
200 | -33.69
+37.50 | GeII[2] | 1696.25 1696.463
1696.50 1696.640
1696.60 1696.800 | CrIII 71
FeII 38 | 600
160 | -24.78
-35.37 | | | | | | | | | | | | | | | ## TABLE I (continued) THE FAR UV SPECTRUM OF 88 Her | 1698.10 1698.190
1699.00 1699.190 | FeII 40
FeII 85 | 10
40 | -15.90
-35.28
-33.51 | NiIII [25] | 1817.80 1817.73
1818.35 1818.509 | ClIII 7
FeII 66 | 400
40 | +11.55
-24.75 | | |---|--------------------------------|--------------------|----------------------------|-------------------------------------|---|--|---------------------|----------------------------------|---------------------| | 1700.10 1700.29
1700.95 1701.023 | CrIII 34
CuIII 31 | 200
200 | -33.51
-12.33 | | 1820.80 1820.840
1822.90 1822.150 | CrII 18
FeII 66 | 8 0
20 | 0.00
-24.69 | | | 1701.25 1701.480 | CrIII 71 |
600 | -40.56 | 0 h | 1822.50 1822.50
1823.05 1823.061 | ClIII 7 | 600
800 | 0.00 | ъ | | 1701.95 1702.043
1702.90 1702.994 | FeII 38
CuIII 11 | 500
250
25 | -17.61
-15.84 | 0 , b | 1824.60 1824.59 | ClIII 7 | 300 | 0.00 | | | 1703.20 1703.408
1704.40 1704.652 | NiII 5
FeII 39 | 25
10 | -35.22
-44.01 | | 1824.60 1824.59
1825.00 1825.021
1826.95 1826.991 | SiI 12
FeII 65 | 1
20 | 0.00
0.00 | | | 1705.333 | CuIII 21 | 150
20 | -38.67 | | 1927.50 1827.736 | FeII 65
FeII 66
ClIII 7 | بر
500 | -37.74
0.00 | b | | 1707.20 1707.390 | FeII 84 | 40 | -34.95 | a === [m.] | 1830.05 1830.006 | FiIII 20 | 400 | +8.19 | MiIII [20] | | 1707.25 1707.346
1708.00 1708.250 | FiIII 25
FeII 84 | 200
20 | -17.55
-43.89 | CrIII [71] | 1830.683
1830.60 1830.861 | FeIII 117
FeII 66 | 200
4 | -42.60 | | | 1708.45 1708.627
1709.00 1709.036 | FeII 38
CuIII 11 | 160
350 | -29.85
0.00 | MiIII [25]
Culli [21] | 1830.60 1830.861
1831.50 1831.724
1832.05 1832.08
1832.25 1832.494 | FeII 66
ClIII 7 | 20
400 | -26.03
0.00 | | | 1709.40 1709.670 | FeII 84 | 300 | -47.87 | ™ <u>[37],</u> ™∐[4] | 1832.25 1832.494 | FeII 65 | 6 | -39.30
-11.43 | | | 1710.60
1711.05 1711.296 | SiII 10 | . 20 | -22.77 | | 1833.00 1833.071
1833.15 1833.310
1835.65 1835.869 | ClIII 7 | 10
400 | -26.16 | | | 1711.55 1711.63
1712.80 1712.997 | CrIII 34
FeII 38 | 200
400 | -14.01
-35.01 | | 1835.65 1835.869
1836.23 | FeII 98
CrII 18 | 300
240 | -34.32 | | | 1715.25 1715.303 | FiIII 16 | 650
240 | -8.73
0.00 | b
b | 1838.309 | FeIII 117 | 450
200 | -40.71 | | | 1715.80 1715.931 | MiIII 15 | 100 | -22.74 | b
b | 1842.20 1842.256 | FeII 65 | 10 | -8.13 | | | 1716.35 1716.577
1717.95 1718.123 | FeII 39
FeII 38 | 40
40 | -36.69
-29.67 | ъ | 1842.547
1842.70 1842.927 | SiIII 20
FeIII 97 | 180
300 | -32.55 | | | 1719-20 1719-77 | AlII 6
FeII 84 | 800
200 | -41.88
-15.69 | riIII [16] | 1842.70 1842.927
1843.502
1844.35 1844.590 | FeIII 117
FeII 397 | 150
100 | -39.03 | FeIII [117] | | 1720.45 1720.616 | FeII 38 | 400 | -20.64 | 13 TT [/] OT [# /] | 1844.70 1844.942 | FeIII 97 | 200 | -39.03 | _ | | 1722.18 1722.283 | ™iII 16 | 900
400 | -47.04
-17.04 | Alii[6],CI[14] | 1845.45 1845.521
1846.35 1846.581 | FeIII 97
FeII 98 | 450
240 | -11.37
-37.35
-35.73 | FeIII [117] | | 1722.15 1722.379
1722.30 1722.534 | CuII 11
SiIV 10 | 500
400 | -38.31
-40.05 | | 1847.05 1847.275
1848.20 1848.231 | NiIII 19
FeII 7 | 650
100 | -35 . 73
0 . 00 | | | 1722.50 1722.620 | VII 129 | 200 | -20.28 | | 1848.50 1848.771 | FeII 141 | 240
450 | -43.83
+16.20 | | | 1724.10 1724.291
1724.70 1724.963 | PiIII 28
AlII 6 | 75
900 | -33.CA
-48.00 | ИП[6] , FeП[39] | 1849.50 1849.407
1849.95 1849.960 | FeIII 97
FeIII 53 | 300 | 0.00 | FeIII[63] | | 1725.20 1725.402
1726.20 1726.394 | FeII 346
FeII 38
SiIV 10 | 100
240 | -34.77
-33.00 | Mil[13] | 1850.25 1850.20
1850.650 | FeIII 97
FeIII 53
FeII 65 | 300
70 | *8.1 0 | | | 1727.15 1727.377
1728.00 1728.139 | SiIV 10
CuIII 18 | 300
100 | _30.03
-22.56 | r - 1 | 4074 70 4074 7477 | FeII 65
CrII 33 | 20
5 00 | 0.00 | | | 1730.20 1730.483 | FiIII 15 | 75 | -48.54 | | 1853.95 1854.149 | NiIII 19 | 800 | -30.72 | | | 1731.95 1732.253 | FeII 110
FeII 420 | 200
300 | -22.53
-51.96 | r 7 | 1854.20 1854.384
1854.45 1854.716 | FeIII 97
AlIII 1 | 200
1000 | -29.10
-43.68 | Реш[63], Реш[63], b | | 1733.05 1733.129
1736.95 1737.252 | "iIII 15
ViIII 15 | 250
500 | -12.09
-50.00 | FeII [110]
FeII [37],MnII [73],h | 1 855.7 0 1855 . 920
1856 . 50 1856 . 690 | AlII 4
FeIII 63 | 30 0
450 | -35•55
-30•69 | | | 1738.75 1738.785
1741.30 1741.547 | FiIII 28
FiII 5 | 300
1000 | 0.00
-41.34 | 6.1, 5.1, | 1851.30 1851.31
1853.95 1854.149
1854.20 1854.384
1854.45 1854.716
1855.70 1855.920
1856.50 1856.690
1857.90 1858.026
1858.45 1858.542
1859.70 1859.741 | Alki 4
FeIII 63 | 700
300 | -20.34
-22.59 | МП[12],FeП[7] | | 17/.1.20 17/.1.963 | FiIII 21 | 300 | -27.57 | | 1859.70 1859.741
1859.95 1860.040 | FeII 65 | 300 | 0.00 | 0
FeIII[63] | | 1745.10 1745.2482
1746.818] | FeII 101 | 150
300 | -24.00 | | 1861.65 1861.665 | FeII 97
FeIII 63 | 400
200 | -14.49
0.00 | reili[05] | | 1747.011]
1748.10 1748.285 | NiIII 15
FiII 5 | 550
500 | -30.99 | | 1862.20 1862.311
1862.50 1662.790
1863.30 1863.317 | AlII /.
AlIII 1 | 1000
600 | -17.70
-46.71 | | | 1750.391 | CuIII 17 | 250
300 | | | 1863.30 1863.317
1864.50 1864.743 | FeIII 62
FeII 126 | 250 | 0.00 | T TT [104] | | 1751.75 1751.900 | CI 62 | 800 | -18.34
-25.68 | FIII[19] | 1865.00 1865.202 | FeIII 15/ | 400
450 | -40.73
-32.16
-32.13 | FeII [126] | | 1752.30 1752.427
1753.10 1753.101 | NiIII 21
SiI 77.02 | 300
15 | -20.52
0.00 | | 1866.10 1866.305
1866.70 1866.815 | FeIII 52
FeI 39
FeIII 52
FeIII 52 | 600
40 | -32.13
-17.68 | CrII [156] | | 1753.10 1753.101
1754.60 1754.808
1760.05 1760.104 | MiII 4
AlII 5 | 50
350 | -34.20
-8.52 | | 1869.60 1869.828
1870.85 1871.152 | FeIII 52
FeIII 52 | 650
600 | -35.31
-48.09 | | | 1760.10 1760.395
1760.40 1760.415 | CII 10
FeII 100 | 450
400 | -49.41
0.00 | CoIII[21]
FiIII[21] | 1875.00 1375.536
1876.00 1876.181 | FeII 345 | 300 | -84.79 | | | 1760.80 1760.810 | CII 10 | 500 | 0.00 | יידדדנגין | 1876 . 70 1876.3 <u>3</u> 5 | FeII 97 | 160
300 | -27.12
-20.76 | | | 1761.20 1761.379
1761.80 1761.975 | PeII 101
AlII 5 | 500
300 | -30.66
-28.95 | | 1878.15 1877.989 | FeII 125
FeIII 63 | 400
800 | -33.54
+27.15 | CrII [156] | | 1763.75 1763.95
1764.50 1764.683 | AlII 5
NiIII 14 | 700
200 | -34.02
-31.95 | AlII[5]
WiIII[28] | 1879.95 1880.046
1880.95 1880.976 | FeIJ 141
FeJI 126 | 40
400 | -15.00
0.00 | F. 1 | | 1765.05 1765.0296
1765.60 1765.815 | SiI 14
AlII 5 | 190
300 | 0.00
-35.67 | 61 | 1881.95 1882.047
1882.75 1882.979 | FeIII 62
FeIII 62 | 650
250 | -14.34 | | | 1767.50 1767.738 | AlII 5 | 400 | -35.64 | Will[14] | 1883.75 1883.816 | FeIII 62 | 200 | -43.02
-9.54 | Ъ | | 1769.40 1769.643
1771.35 1771.492 | MiIII 14
MiIII 14 | 1000
100 | -40.00
-23.70 | ГеШ[100], ГеШ [116] | 1884.55 1884.596
1884.80 1885.125 | FeIII 62
FeIII 96 | 550
6 0 0 | 0.00
-50.91 | b
b | | 1772.35 1772.509
1773.75 1773.949 | FeII 90
MiII 3 | 300
25 | -28.00
-33.89 | | 1885.95 1885.947
1886.50 1886.757 | FeIII 96
FeIII 52 | 300
800 | -50.91
0.00
-39.75 | b
FeIII[52] | | 1773.75 1773.949
1774.75 1774.942
1776.40 1776.661 | PI 1
FeII 99 | 7 50
20 | -33.89
-32.13
-43.89 | FeIII [118] | 1885.95 1885.947
1886.50 1886.757
1886.96 1887.197
1887.45 1887.471
1888.50 1888.729 | FeIII 53
FeIII 52 | 550
550 | -36.54
0.00 | FeIII[62] | | 1779.25 1779.442 | MiIII 21 | 30 | -32.04 | 0.1 | 1888.50 1888.729 | FeII 125 | 400 | -34.95 | | | 1781,60 1781.702 | NiIII 21
FeII 67 | 30
50
40 | -13.47
-16.83 | 0,b
b | 1889.35 1889.451
1890.50 1890.669] | FeIII 53
FeIII 52 | 300
900 | -15.87
-26.82 | CrII[42],AsI[1] | | 1782.45 1782.747
1782.75 1782.830 | NiIII 14
PI 1 | 60
600 | -48.81
-13.44 | ъ | 1892 . 247
1892 . 073 | FeIII 96
FeIII 96 | 300
300 | | | | 1783.20 1783.2315
1785.10 1785.262
1786.50 1786.738 | SiI 73
FeII 191 | 25
800 | 0.00
-26.88 | b | 1891.90 1892.140 | FeIII 52
FeIII 96 | 300
300 | -38.00
-22.17 | | | 1786.50 1786.738 | FeII 191 | 800 | -38.61 | | 1002 00 1007 00/ | FeTT 125 | 200 | -15.81 | FeIII[83] | | 1787.45 1787.680
1787.80 1787.997 | PI 1
FeII 191 | 540
70 0 | -38.61
-31.89 | | 1895.00 1894.983
1895.25 1895.456
1895.60 1895.675 | FeIII 96
FeIII 34 | 250
1000 | 0.00
-31.65 | | | 1788.25 1788.485
1790.40 1790.402 | NiII 5
NiII 27 | 100
250 | -41.94
0.00 | | 1896.55 1896.803 | FeII 122
FeIII 83 | 200
600 | -11.07 | | | 1791.40 1791.644
1793.20 1793.371 | NiIII 14 | 200
200 | -40.20
-30.30 | | 1897.15 1897.379
1897.80 1897.850 | FeIII 83
ClIII 8 | 200
300 | -39.54
-36.36
0.00 | | | 1794.85 1794.904 | NiIII 14 | 200 | -8.34 | | 1898.40 1893.538 | FeII 140 | 200 | -20 .5 2 | | | 1801.35 1801.506 | FeII 142
NiIII 20 | 200
50 | -35.01
-24.96 | | 1898.92 | FeIII 96
CrII 40 | 300
700 | | | | 1803.023
1804.30 1804.473 | SiIII 51
NiII 30 | 60
2 | -28.33 | | 1901.20 1901.096 | FeII 362
FeIII 95 | 10
600 | -25.26
+17.34 | | | 1807.90 1808.011
1808.50 1808.51 | SiII 1
ClIII 7 | 150
400 | -18.24
0.00 | | 1901,337 | FeIII 95
FeIII 57
FeIII 96 | 400
200 | 0.00 | c1111[8] | | 1809.18 1809.316
1811.90 1812.065 | FeII 142 | 200
30 | -21.54
-28.33 | C1111[7] | 1901.54 1901.540
1902.25 1902.459
1903.10 1903.370 | SiII 18
FeII 139 | 100
20 | -31.53
-42.54 | 21111[0] | | 1815.45 1815.761
1816.75 1816.927 | NiII 24
FeII 66
SiII 1 | 200 | -51.23
-28.08 | | .,-5,05•510 | 107 | 20 | -4× • J4 | | | | | | 20.00 | | | | | | | ## TABLE I (continued) | 1904.65 | 1904.784 | FeII 139 | 300 | -20.46 | | 2055,05 2055.270 FeII 109 200 -32.10 | |--
--|--|--|---|----------------------------------|--| | 1906.30 | 1906 . 457 | FeIII 118 | 400 | -23.58 | T1II[3] | 2057.15 2 057.332 FeII 82 120 -26.25 FeIII 78 | | 1907.60 | | FeIII 83 | 650 | 0.00 | L - | 2058.55 2058.560 FeIII 100 150 0.00 2059.50 2059.577 FeIII 78 120 -39.33 | | 1908.10 | 1907.741
1908.32 | FeIII 87
VII 80 | | -37, 50 | | 2054.50 2054.577 FeIII 76 120 -59.55
2061.35 2061.552 FeIII 48 250 -29.10 | | 1909.15 | | VII 8 | 400 | -34.59
-33.00 | TiII[3] | 2061.70 2061.751 FeIII 78 200 -7.26 | | 1910.45 | 1910.669 | FeII 12 | | -32.97 | FeIII[57] | 2061.80 2062.016 | | 1911.15
1911.80 | 1911.338
1911.88 | FeIII 135
VII 80 | | -28.23
-12.54 | Mari[10], GrII[155] | 2063.45 2063.672 FeII 92 250 -31.98
2064.15 2064.228 ZnII 4 200 -11.61 | | 1912.40 | | VII 80 | | 0.00 | CeI[1],FeII[124] | 2065.25 2065.460 CrII 1 150 -30.48 | | 1912.95 | 1913.10 | VII 80 | | -7. 83 | Cliii[80],0,b | 2065.80 1066.005 FeII 109 150 -29.04
2068.00 2068.243 FeIII 48 350 -34.80 FeIII[37] | | 1913.95
1914.95 | 1914.056
1915.083 | FeIII 34
FeIII 51 | 1000
750 | -25.07
-20.34 | MnII[10] | 2068.00 2068.243 FeIII 48 350 -34.80 FeIII [37]
2088.60 2088.625 FeIII 67 60 0.00 | | 1915.50 | 1915.750 | FeIII 57 | 150 | -39.15 | mar [10] | 2088.85 2089.089 FeIII 77 90 -34.44 | | 1916.50 | 1916.507 | FeIII 9 | 300 | 0.00 | n[or] | 2089.95 2090.139 FeIII 67 350 -25.83 FeIII [124] | | 1917.25
1917.95 | 1917.337
1918.114 | FeII 96
FeII 138 | 300
40 | -12.51
-25.02 | FeIII[95] | 2091.15 2091.312
2091.34 FeIII 77 120 -22.95 GaII 1 1000 | | 1918.00 | 1918.284 | FeIII 5 | 450 | -43.77 | | 2093.504 FeIII 77 AO 0 | | 1918.35 | 1918.480 | FeIII 108 | 450 | -20.31 | | 2094.45 2094.641 FeII 107 10 -27.21 | | 1919.35
1920.05 | 1919.572
1920.186 | FeIII 107 | 250
250 | -34.38
-20.31 | | | | 1922.55 | 1992.797 | FeIII 95
FeII 138 | 250
400 | -37.44 | | | | 1922.50 | 1922.789 | FeIII 51 | 1000 | -43.68 | r7 . | 0 = blend with reseau marks. | | 1922.95
1923.60 | 1923.003
1923.877 | FeIII 35 | 450
450 | -7.80
-42.12 | CIII[12], b | | | 1924.50 | 1924.532 | FeIII 7 | 400 | 0.00 | | b = Very weak, diffuse and severely blended lines. The error for these measurements is much larger than for well-defined, unblended lines. | | 1925.90 | 1925.987 | FeII 123 | 400 | -15.27 | FeIII[57] | measurements is much target than for well-defined, unotender times. | | 1926.10
1927.45 | 1926.304
1927.481 | FeII 34 | 1000
20 | -31.14
0.00 | | | | 1928.10 | 1928.265 | FeIII 95 | 300 | -24.87 | | | | 1935.15 | 1935.296 | FeII 96 | 300 | -21.69 | | | | 1935.60
1936.50 | 1935.580
1936.799 | FeIII 95
FeII 96
CrII 39
FeII 96
FeIII 51 | 500
400 | 0.00
-43.3 8 | | | | 1937.20 | 1937.345 | FeIII 51 | 950 | -21.66 | | | | 1938.50 | 1938.8997 | FeII 188 | 160 | -60.00 | | | | 1939.95 | 1938.901]
1940.018 | FeIII 106
FeIII 61 | 650
550 | -9.27 | FeIII 106 | | | 1941.75 | 1941.693 | FeIII 79 | 550
200 | +18.54 | 10111 [100] | | | 1943.40 | 1943.481 | FeIII 51 | 950 | -12.33 | | | | 1946.00
1946.90 | 1945.980
1946.983 | CrII 136
FeI 36 | 200
600 | 0.00
-12.77 | Ъ | | | 1948.15 | 1948.372 | FeII 123 | 200 | -33.87 | | | | 1949.50 | 1949.462 | FeIII 79 | 150 | 0.00 | | | | 195 0.85 | 1950.334
1951.007 | FeIII 116
FeIII 68 | 650
800 | -23.04 | SII[1],FeIII[79],0 | | | 1952.35 | 1952.648 | FeIII 68 | 700 | -44.55 | | | | 1953.20 | 1953.322 | FeIII 68 | 900 | -18.42 | [-o-] | | | 1953 . 20
1954 . 40 | 1953.488
1954.223 | FeIII 82
FeIII 61 | 650
650 | -42.99
+33.75 | FeIII[82]
CoI[95] | | | 1955.60 | 1955.690 | FeI 36 | 400 | -13.84 | 001[57] | | | 1962.50 | 1962.717 | FeIII 6 | 300 | -32.10 | r 7 | | | 1963.10 | 1963.110 | FeII 169 | 500 | 0.00 | FeII [170] | | | 1964.00 | 1964.260
1964.169 | FeIII 51
FeIII 82 | 450
550 | -30.00 | | | | | 1964.019 | FeIII 82 | 300 | | | | | 1964.35
1965.20 | 1964.342
1965.309 | FeII 170
FeIII 100 | | 0.00
-15.24 | | | | 1965.80 | 1966.201 | FeIII 6 | 150 | -61.02 | ъ | | | 1966.70 | 1966.74 | FeIII 116 | | 0.00 | | | | | 1970.860 | | | | | | | 1976.00 | | SII 1 | 400 | | 0 | | | | 1970.8796
1976.126 | SII 1 | 400
500
550 | -18.21 | 0 | | | 1976.40 | 1976.126
1976.62 | SII 1
GeI 6
FeIII 54
VII 127 | 400
500
550
600 | -18.21
-33.39 | | | | 1978.40 | 1976.126
1976.62
1978.417 | SII 1
GeI
6
FeIII 54
VII 127
FeIII 54 | 400
500
550
600
250 | -33•39
0•00 | 0 | | | 1978.40
1979.80 | 1976.126
1976.62 | SII 1
GeI 6
FeIII 54
VII 12
FeIII 54
VII 12 | 400
500
550
600
250
400 | -33.39 | | | | 1978.40
1979.80
1980.45
1981.85 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076 | SII 6 GeI 6 FeIII 54 VII 127 FEIII 54 VII 127 VII 127 VII 127 FEIII 54 | 400
500
550
600
250
400
250
400 | -33.39
0.00
-36.36
-21.21
-34.81 | 0 | | | 1978.40
1979.80
1980.45
1981.85
1982.20 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41 | SII GEI 6 FEIII 52 VII 127 FEIII 52 VII 127 VII 127 VII 127 FEIII 54 VII 121 | 400
500
550
600
250
400
250
400
80 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77 | 0 | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1983.40 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676 | SII 6 GeI 6 FeIII 54 VII 127 FEIII 54 VII 127 VII 127 VII 127 FEIII 54 | 400
500
550
600
250
400
250
400
80
550
150 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83 | 0 | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1983.40
1992.20 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196 | SII 6 GeI 6 FeIII 5 VII 12 FeIII 12 VII 12 VII 12 VII 12 FEIII 5 FEIII 5 FEIII 5 FEIII 8 | 400
500
550
600
250
400
250
400
80
550
150
600 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00 | 0 | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1983.40
1992.20
1992.75 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852 | SII 6 Gel 6 FeIII 50 VII 12 FeIII 12 VII 12 VII 12 FEIII 12 FEIII 56 FEIII 8 FEIII 8 FEIII 100 | 400
500
550
600
250
400
250
400
80
550
150
600
400 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-15.06 | 0 | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1983.40
1992.20
1992.75 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852
1993.289] | SII 6 GeI 6 FeIII 5 VII 12 FeIII 12 VII 12 VII 12 FEIII 5 FEIII 5 FEIII 8 FEIII 8 FEIII 10 FEIII 5 FEIII 5 FEIII 5 FEIII 5 FEIII 5 FEIII 5 | 400
550
600
250
400
250
400
30
550
150
600
400
160
450 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-15.06
-27.00 | 0 | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1983.40
1992.20
1992.75 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852
1993.2891
1993.2621 | SII GEI 6 FeIII 5/ VII 12: FEIII 5/ VII 12: VII 12: VII 12: FEIII 5/ FEIII 8 FEIII 8 FEIII 9: FEIII 9: FEIII 5/ | 400
500
550
600
250
400
250
400
150
600
400
160
450
900 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-15.06 | 0
CuII[17] | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1983.40
1992.75
1993.10 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.676
1982.41
1982.805
1993.196
1992.196
1993.262
1993.262
1994.673 | SII | 400
500
550
600
250
400
250
400
80
550
400
400
450
900
400 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-15.06
-27.00 | 0 CuII[17] | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1992.75
1992.75
1993.10
1993.90 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1993.676
1992.196
1992.852
1993.2621
1994.857
1994.857
1995.563 | SII GEI 6 FEIII 5/ VII 12/ FEIII 5/ VII 12/ VII 12/ VII 12/ FEIII 5/ VII 12/ FEIII 5/ FEIII 8/ FEIII 8/ FEIII 9/ FEIII 5/ | 400
550
550
600
250
400
250
400
80
550
450
450
450
400
400
800 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-15.06
-27.00
-25.56 | O
CuII[17]
PeIII[50] | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1992.75
1993.10
1993.90
1995.40
1996.20 | 1976.126
1976.62
1978.417
1980.590
1982.076
1982.41
1982.45
1983.676
1992.852
1993.2891
1994.073
1994.857
1995.563
1996.420 | SII | 400
550
600
250
400
250
400
80
550
400
450
900
400
800
800 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-15.06
-27.00
-25.56
-24.06
-33.06
-40.00 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978-40
1979-80
1980-45
1981-85
1982-80
1983-40
1992-75
1993-10
1993-90
1996-20
1999-30
1999-30 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852
1993.2891
1994.073
1994.857
1994.857
1995.450
1996.420 | SII Column Colu | 400
550
600
250
400
250
400
80
550
150
600
450
450
400
200
200 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-15.06
-27.00
-25.56
-24.06
-33.06
-33.00 | O
CuII[17]
PeIII[50] | | | 1978-40
1979-80
1980-45
1981-85
1982-20
1983-40
1992-75
1993-10
1993-90
1995-40
1996-20
1999-30
2000-15
2001-00
2006-05 | 1976.126
1976.62
1978.417
1980.590
1982.076
1982.41
1982.45
1982.85
1983.676
1992.852
1993.2821
1994.073
1994.673
1994.420
1995.420
1996.420
1996.420
2001.262
2001.262 | SII GeI 6 | 400
550
600
250
400
250
400
80
150
600
400
400
400
400
800
800
800
8 | -33.39
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-15.06
-27.06
-23.06
-40.00
-33.00
-38.98
-31.38 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978-40
1979-80
1980-45
1981-85
1982-80
1983-40
1992-75
1993-10
1993-90
1996-20
1996-20
1999-30
2006-05
2006-05 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852
1993.262
1994.073
1994.857
1994.857
1996.420
1996.430
2000.368
2001.262
2000.265
2007.013 | SII GeI CeI | 400
550
600
250
400
250
400
80
550
150
400
450
400
200
200
300
40
25
200
200
200 | -33.99
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-27.00
-25.56
-24.06
-33.06
-40.00
-38.98
-31.38
-31.38 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1992.20
1992.75
1993.10
1993.90
1995.40
1996.30
2000.15
2001.00
2006.05
2007.40 | 1976.126
1976.62
1978.417
1980.590
1982.076
1982.41
1982.41
1982.45
1982.41
1992.85
1993.289
1993.289
1994.073
1994.857
1995.563
1996.420
1996.420
2000.368
2001.262
2006.265 | SII Get FeIII 5/1 5/2 5/ | 400
500
550
600
250
400
250
400
550
600
400
450
900
400
800
200
300
201
301
302
303
304
305
306
306
307
307
307
308
309
409
409
409
409
409
409
409
4 | -33.99
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-27.00
-25.56
-240.00
-38.98
-31.38
-31.38
-31.38 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978.40
1978.40
1979.81
1980.45
1981.85
1982.20
1982.20
1992.75
1993.10
1995.40
1996.20
1999.30
2000.15
2001.00
2006.05
2007.40
2007.55 | 1976.126
1978.417
1980.590
1982.076
1982.41
1982.805
1982.41
1982.805
1993.262
1993.262
1993.262
1994.430
1996.430
1996.430
2000.368
2001.262
2006.265
2007.452
2007.452 | SII GEI 26 FEIII 5/ VII 12/ FEIII 5/ VII 12/ FEIII 5/ VII 12/ FEIII 5/ FEIII 8/ FEIII 8/ FEIII
5/ 18/ | 400
550
600
250
400
250
400
80
550
400
450
900
400
800
200
300
150
120
120
250 | -33.99
-36.36
-21.21
-34.81
-31.77
0.00
-40.83
0.00
-27.00
-25.56
-24.06
-33.06
-40.00
-33.99
-31.38
-23.91
0.00
-23.91
0.00 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978-40
1979-80
1980-45
1981-85
1982-20
1982-80
1983-40
1992-75
1993-10
1993-90
1995-40
1996-20
2006-15
2001-00
2006-85
2007-40
2007-55
2010-65 | 1976.126
1976.62
1978.417
1980.590
1982.076
1982.41
1982.85
1983.676
1992.85
1993.2891
1994.073
1994.857
1994.63
1996.420
1996.420
1996.420
2001.262
2001.262
2007.013
2007.452
2007.711
2010.688 | SII Gel Communication | 400
500
550
600
250
400
250
400
500
400
400
800
800
800
200
300
40
120
250
120
120
10 | -33.99
0.00
-36.36
-21.21
-34.81
-31.77
0.00
-15.06
-27.00
-25.56
-24.06
-33.00
-38.98
-31.38
-23.91
0.00
-23.91
0.00
-24.410 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978-40
1979-80
1980-45
1981-85
1982-20
1983-40
1992-75
1993-10
1993-90
1996-20
1996-20
1996-20
1996-20
1996-20
1996-20
1996-20
2006-05
2006-05
2007-40
2007-55
2010-65
2022-60 | 1976.126
1976.62
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852
1993.2891
1994.073
1994.857
1995.430
1996.420
2000.368
2001.262
2007.452
2007.452
2007.452 | SII GeI 6 GeI 6 GeI 6 GeI 7 | 400
550
600
250
400
250
400
80
550
150
400
400
400
200
300
40
25
120
150
120
120
120
120
100 | -33.39
-36.36
-21.21
-34.81
-31.77
0.00
-15.06
-27.00
-25.56
-24.06
-33.06
-38.98
-31.38
-31.39
0.00
-23.91
0.00
-24.08 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1983.40
1992.75
1993.10
1993.90
1995.40
1996.20
2006.05
2006.05
2007.40
2007.55
2010.65
2023.25
2023.25
2023.25 | 1976.126
1976.62
1978.417
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852
1993.2891
1993.2821
1994.073
1994.857
1995.563
1996.420
1996.420
2000.368
2001.262
2006.265
2007.452
2007.452
2007.452
2007.452
2007.452
2007.452
2007.452
2007.452 | SII Gel Communication | 400
500
500
500
600
250
400
80
150
600
400
400
200
300
40
200
300
40
150
600
100
100
100
100
100 | -33.99 0.00 -36.36 -21.21 -34.81 -31.77 0.00 -40.83 0.00 -15.06 -27.00 -25.56 -24.06 -33.00 -38.98 -31.38 -23.91 0.00 -24.10 -34.08 -31.14 -32.50 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1983.40
1992.75
1993.10
1993.90
1995.40
1996.20
2006.05
2006.05
2007.40
2007.55
2010.65
2023.25
2023.25
2023.25 | 1976.126
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852
1993.2891
1994.073
1994.857
1994.857
1996.420
1996.430
2000.368
2001.262
2007.452
2007.452
2007.452
2007.452
2007.452
2007.452 | SII Gel | 400
500
500
600
250
400
250
400
550
600
400
400
200
200
200
200
150
120
150
120
150
100
100
70
300 | -33.99
-36.36
-21.21
-34.81
-31.77
0.00
-15.06
-27.00
-25.56
-24.08
-31.38
-31.38
-31.38
-31.38
-31.38
-31.38
-31.38
-31.38
-31.38
-31.38
-31.38
-31.38
-31.44
-32.50
-34.08 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1983.40
1992.75
1993.10
1993.90
1995.40
1996.30
2000.15
2001.00
2006.05
2007.55
2007.40
2007.55
2010.65
2022.60
2023.25
2023.25
2023.25 | 1976.126
1976.62
1978.417
1980.590
1982.076
1982.41
1982.45
1983.676
1992.196
1992.852
1993.2891
1994.673
1994.673
1995.563
1996.420
1996.420
1996.420
2007.013
2007.452
2007.711
2007.715
2007.715
2003.480
2022.776
2023.480
2022.776
2023.480
2022.526 | SII Gel Color | 400
550
600
250
400
250
400
80
550
600
400
400
800
200
300
255
120
120
150
120
150
100
100
100
100
100
100
10 | -33.99 -36.36 -21.21 -34.81 -31.77 -0.00 -40.83 -27.00 -25.56 -24.00 -33.00 -38.98 -31.38 -23.91 -0.00 -24.10 -34.88 -31.14 -32.50 -34.55 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978.40
1978.40
1979.40
1980.45
1982.20
1982.20
1992.20
1992.75
1993.10
1995.40
1996.20
1995.40
1996.20
1999.30
2006.05
2006.05
2007.55
2007.55
2022.60
2022.60
2023.25
2023.50
2027.55
2027.55
2029.00 | 1976.126
1978.417
1980.04
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852
1993.2891
1994.073
1994.857
1994.857
1996.420
1996.430
2000.368
2001.262
2007.452
2007.452
2007.452
2007.452
2007.452
2007.452 | SII Gel | 400
550
600
250
400
250
400
80
150
600
400
400
200
200
200
100
120
120
120
1 | -33.99
-36.36
-31.21
-34.81
-31.77
-0.08
-157.00
-25.56
-24.06
-33.06
-31.38
-23.98
-31.38
-23.90
-24.10
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978.40
1979.80
1980.45
1981.85
1982.20
1982.80
1992.75
1993.10
1993.90
1995.40
1996.20
2006.05
2006.05
2006.05
2007.55
2010.66
2022.60
2022.60
2022.60
2022.52
2023.55
2022.35
2022.35
2022.35
2022.35
2022.35
2022.35
2023.25
2023.35
2023.35 | 1976.126
1976.62
1978.417
1980.590
1982.076
1982.401
1982.805
1983.676
1992.196
1992.852
1993.2891
1994.673
1994.673
1994.420
1994.403
2000.368
2001.262
2006.265
2007.013
2007.452
2007.711
2010.688
2022.776
2023.480
2023.480
2023.480
2025.426
2027.778
2025.426
2027.778
2029.182 | SII GeI | 400
500
500
500
600
250
400
80
150
600
400
160
400
160
200
200
150
120
150
100
100
100
100
100
100
10 |
-33.99
06.36
-21.21
-34.81
-31.77
0.00
-40.83
-27.00
-25.56
-24.06
-33.00
-31.98
-31.98
-31.98
-31.98
-31.91
0.00
-34.88
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
0.00
-34.98
-31.91
-34.98
-31.91
-34.98
-31.91
-34.98
-31.91
-34.98
-31.91
-34.98
-31.91
-34.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98
-31.98 | 0 Cull[17] Pelli[50] Pelli[55] | | | 1978.40
1978.40
1979.40
1980.45
1982.20
1982.20
1992.20
1992.75
1993.10
1995.40
1996.20
1995.40
1996.20
1999.30
2006.05
2006.05
2007.55
2007.55
2022.60
2022.60
2023.25
2023.50
2027.55
2027.55
2029.00 | 1976.126
1978.417
1980.590
1982.076
1982.41
1982.805
1983.676
1992.196
1992.852
1993.2891
1994.073
1994.857
1994.857
1994.407
1995.430
2000.368
2001.262
2007.452
2007.452
2007.452
2007.452
2007.452
2007.452
2007.452
2007.452
2007.452
2007.711
2010.688
2024.586
2024.586
2027.778
2024.520
2025.486
2027.778
2024.520
2025.486
2027.778
2028.470
2033.470
2033.470 | SII GEI 1 GEI 1 GEI 1 FEIII 5/ VII 12/ FEIII 5/ VII 12/ FEIII 5/ VII 12/ FEIII 5/ FEIII 5/ FEIII 8/ FEIII 5/ FEIII 5/ FEIII 5/ FEIII 5/ FEIII 5/ FEIII 5/ FEIII 18/ FEII 18/ FEIII 18/ FEII | 400
500
500
500
600
400
250
400
400
400
400
400
400
200
20 | -33.99
-36.36
-31.21
-34.81
-31.77
-0.08
-157.00
-25.56
-24.06
-33.06
-31.38
-23.98
-31.38
-23.90
-24.10
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05
-34.05 | 0 Cull[17] Pelli[50] Pelli[55] | | ## TABLE II. — SWP 23079. | | | T | 16-14 | Tul | 1502.95 | 1503.21 | NiII | | 12 | |--------------------------------------|--------------------------------------|-------------------------|-------------------|------------|--------------------------------------|--|----------------------------|----------------|-------------------| | λmes
1206.25 | λlab
1206.24 | Ion
NiII | Mult. | Int.
7 | 1504.00 | 1504.20] | AsII | - | 150 | | 1228.35 | 1228.41 | NI | - | 18
200 | 1504.15 | 1504 . 27]
1504 . 37 | FeII
PI | - | 3
36 | | 1249.65
1255.20 | 1249.82
1255.27 | PII
SiI | 41 | 10 | 1506.80 | 1506.96]
1506.98] | NiII
PI | - | 10
18 | | 1283.30 | 1283.58]
1283.39] | MnIII
NiII | 9 - | 500
12 | 1508 . 10
1 508.6 0 | 1508.22
1508.81 | FeII
NiII | - | 0
100 | | 1290.60 | 1290 . 97
1290 . 93 | SeII
MnII | 14
6 | 800
10 | 1511.20 | 1511.61 | FeIII | - | 300 | | 1297.80 | - | ? | -
- | 40 | 1514.10 | 1514.337
1514.37 | FeII
NiII | _ | 1
80 | | 1299 . 30
1325 . 30 | 1299•56
1325•35] | CrIII
NiII | = | 100 | 1515.70 | 1514•49J
1515•82 | CuII
MiII | 115 | 200
40 | | 1327.00 | 1325.61]
1327.10] | FeII
FeII | - | 2
0 | 1519 . 25
1520 . 15 | 1519.49
1520.297 | CuII
NiII | 82
- | 100
10 | | 1329.80 | 1327.31
1329.85 | PiII
!'iII | - | 20
13 | 1,55041) | 1520.39 | NiII | - | 30 | | 1330.75 | 1330.61 | MnII | 79 | 12
50 | 1521.60 | 1520.46]
1521.62 | NiII
PII | _ | 40
300 | | 1345.60
1351.20 | 1345.88
1351.28 | MiII
MiII | = | 10 | 1522.45 | 1522.697
1522.69 | FeII
MiII | - | 2
10 | | 1358.60
1358.75 | 1358 . 77
1359 . 00 | CuII
CuII | 3
173 | 30
20 | 1523:20 | 1523.44]
1523.58] | PII
FII | - | 10
40 | | 1361 . 20
1366 . 50 | 1361 . 37
1366 . 72 | FeII
FeII | - | 85
85 | 1524.50
1524.15 | 1524.66 | FeIII | _ | 300
12 | | 1367.90 | 1368.09] | FeII
CuII | - 2 | 50
25 | 1534 . 15
1536 . 80 | 1534.48
1537.04 | NiII
NiII | - | 12 | | 1370.30 | 1367.95
1370.54 | riII | - | 25 | 1537 . 90
1553 . 65 | 1538.09
1553.89 | ${\tt GeII} \\ {\tt CuII}$ | 3
114 | 100
90 | | 1372.10
1373.60 | 1372.29
1373.65] | FeII
AsII | | 1
800 | 1554.25 | 1554 . 33]
1554 . 50] | NiII
NiII | - | 8
6 | | 1374.70 | 1373.71]
1373.71 | FeII
FeII | -
- | 120
120 | 1555.50
1562.05 | 1555.70
1562.28 | CuII
SiI | 113 | 300 | | 1375.70
1376.45 | 1375.78
1376.67 | AsII
FeII | - | 750
10 | 1578.00 | 1578.25 | SiI | 41
37 | _ | | 1376.70 | 1377.00 | FiII | = | 10 | 1583 . 00
1588 . 40 | 1583 . 20
1588 . 71 | FeIII
NiII | - | 200
9 | | 1377.80
1378.10 | 1377 . 93
? | PI
? | - | 60
? | 1597 . 60
1599 . 80 | 1597 . 72
1600 . 02 | SiI
FeII | 33
- | 25
2 | | 1383.40
1386.20 | 1383 . 57
1386 . 47 | FeII
FeII | _ | 20
0 | 1603.20
1605.65 | 1603.32
1605.84 | ZnII
SiI | _ | 100 | | 1387.10
1392.00 | 1387,22
1392,14 | FeII
FeII | - | 4 | 1613.65 | 1613.94 | ZnII | 33
- | 20
25 | | 1393.20 | 1393.33 | MiII | = | 100 | 1614.60 | 1614.56]
1614.63] | SiI
SiI | 30
32 | 25
30
25 | | 1403.00
1409.90 | 1403.24
? | FeII
? | _ | 1
? | 1616.90 | 1617.09
1617.14 | NiII
NiII | - | 50
40 | | 1405.55
1408.30 | 1405.60
1408.47 | FeII
FeII | - | 2
80 | 1618.70
1619.65 |
1619.09
1619.53] | SiI
SiI | 30
29 | 8 | | 1411.30
1415.50 | 1411.47
1415.72 | FeII
MiII | - | 1 20 | | 1619.85 | NiII | - | 15
20 | | 1416.50 | 1416.62] | FeII | _ | 0 | 1621.25
1623.45 | 1621.42
1623.49] | CuII
SiI | 157
29 | 300
10 | | | 1416.66
1416.73 | l'iII
FeII | - | . 0
0 | 1643.85 | 1623.58J
1643.77 | SiI
CaII | 3
5 | 450
200 | | 1418.65
1419.10 | 1418.85
1419.30 | FeII
FeII | Ξ | 10
0 | 1644.90 | 1645.03 | CIII | 11 | 100 | | 1419.50 | 1419.41 | ?'nII | 78 | 40 | 1647.50
1648.30 | 1647.76
1648.37 | FeII
MnIII | <u>-</u>
25 | 2
100 | | 1420.75
1423.10 | 1420.91
1423.21 | FeII
NiII | Ξ | 30
16 | 1650 . 25
1664 . 15 | 1650.29
1664.51 | GeI
SiI | -
25 | 4
35 | | 1424.10
1425.45 | 1423.31
1425.57 | FeII
NiII | _ | 0
6 | 1665.30
1677.70 | 1665.27
1677.84 | GeI
FeII | - | 5
10 | | 1427.55 | 1427.78]
1427.82] | NiII
CuII | 126 | 10
20 | 1681.00 | 1681.18
1682.67 | FeII
SiI | -
21 | 1
70 | | 1429 . 90
1429 . 90 | 1430.13 | PI
PI | | 20
150 | 1682 . 15
1683 . 25 | ? | ? | - | _ | | 1431.15 | 1430.13
1431.49 | NiII | - | 25 | 1683.80
1702.55 | 1684.00
1702.87 | FeII
SiI | -
16 | 2
70 | | 1432.70 | 1432.78]
1432.87] | MnII
FeII | 40
2 | 86
- | 1706.60
1717.55 | ?
1717.72 | ?
CuII | _
110 | -
15 | | 1434.80
1440.80 | 1434 . 99
? | FeII
? | - | <u>4</u> 0 | 1718.80
1725.80 | 1718.98 | FeII | - | 20 | | 1442.20
1444.90 | 1442.42
1445.04 | FeII
ZnII | - | 2
700 | 1726.60 | 1726.90 | FeII | - | 1 | | 1445.25 | 1//5.391 | FeII | _ | 1 | 1728.70
1729.00 | 1728.82
? | FeII | - | <u>4</u> | | 1445.70 | 1445.46]
1445.98 | WiII
CuII | -
86 | 14
20 | 1731.10
1733.75 | 1731.37
1733.87 | FeII
FeII | - | 20
4 | | 1446.40
1447.80 | 1446.58
1448.08 | Mill
MnII | _ | 20
15 | 1740.10 | 1740.15]
1740.29] | MnIJ
SiI | 13
80 | 200
20 | | 1448.25
1449.90 | 1448.39
1450.00 | FeII
NiII | _ | 70
14 | 1742.50
1743.15 | 1742.73
1743.34 | NI
MnII | 9
13 | 350
100 | | 1451.80 | 1452.05 | MnII
FeII | _ | 6 | 1744.35 | 1744.52 | FeII | - | 3 | | 1454 . 20
1455 . 80 | 1454.30 | ? | - | 20
- | 1748.70
1756.00 | 1748 . 91
? | FeII
? | - | 6 | | 1456.30 | 1456.31]
1456.47] | SeI
FeII | 8 - | 240
1 | 1771.70
1776.80 | 1771.93
1776.82 | FeII
SiI |
13 | 0
150 | | 1461.10
1469.10 | 1461.55
1469.38 | CuII
FeII | 84
- | 15
0 | 1777.70
1778.24 | 1777.90
1778.59] | FeII
MnII | 100 | 4
20 | | 1470.20
1477.20 | 1470.45
1477.01 | ZnII
ZnII | - | 15
400 | | 1778.69 | MnII | - | 100 | | 1477.95 | 1478.00] | MgII | - | 250 | 1780 . 15
1783 . 20 | ? | ? | - | - | | 1480.65 | 1478.21 J
1480.87 | ZnII
MgII | - | 300
200 | 1789 .3 0
1789 . 65 | ?
1789.83 | ?
FeII | - | 2 | | 1480.85
1482.20 | 1480.87
1482.24 | MgII
MgII | _ | 200
100 | 1789.95
1792.00 | 1790.25 | SiI
? | 72
- | 25
- | | 1482.90
1483.45 | 1482.89
1483.553 | MgII
NiII | _ | 300
15 | 1794.50
1796.75 | 1794 77
1796 93 | FeII | - | 1 | | | 1483.68 | MnII
MnII | -
85 | 10
50 | 1800.35 | 1800.45 | FeII
FeII | - | 40
0 | | 1487.45
1489.10 | 1487.86
1489.49 | ZnII | - | 10 | 1800.85 | 1801.00]
1801.13] | SìI
FeII | 69
- | _
1 | | 1489.90
1493.10 | 1490.26
1493.27
1493.34] | N i II
CI | -
64 | 7
10 | 1802.55
1804.30 | 1802.62
1804.45 | GeI
GeI | 7
- | 40
50 | | 1496.30 | 1493•34
1496•52 | PI
FeII | - | 45
40 | 1804.80
1815.25 | 1804.98
1815.40 | FeII
FeII | _ | 1
10 | | 1500.70 | 1500.91 | SeI | 7 | 300 | .01,700,7 | .0.,,•40 | - 511 | | | TABLE II (continued) | 1816.00 | 1816.28 | 'nII | 99 | 25 | |---------|-----------|-------|----------|------------------| | 1817.20 | 1817.53 | MnII | òò
òò | 150 | | 1818.70 | 1818.89 | CrII | | 20 | | 1823.60 | 1823.88 | FeII | _ | 20 | | 1825.20 | 1825.22 | FeII | 66 | | | 1835.15 | 1835.42 | FeII | _ | 8
2
8
9 | | 1839.75 | 1840.04 | SiI | 65 | 8 | | 1860.70 | 1861.09 | GeI | _ | 9 | | 1870.40 | 1870.72 | FeII | - | 1 | | 1872.25 | 1872.36 | FeI | 39 | 160 | | 1904.00 | 1904.25 | FeIII | _ | 150 | | 1909.65 | 1909.85 | FeIII | - | 150 | | 1921.00 | 1921.25 | MnII | - | 800 | | 1929.10 | 1929.41 | FeIII | _ | 250 | | 1940.55 | 1940.77 | FeIII | - | 250 | | 1941.10 | 1941.07 | ArII | 13 | 300 | | 1955.80 | 1956.03 | FeI | 35 | 500 | | 1967.70 | 1967.93 | VΙ | 54 | 400 | | 1968.65 | 1968.87 | FeII | - | 20 | | 1974.30 | 1974 - 49 | FeII | _ | 1 | | 1975.35 | 1975.54 | FeII | - | 20 | | 1977.25 | 1977.59 | SiI | 7 | 400 | | 1978.70 | ? | ? | - | _ | | 1980.80 | ? | ? | - | - | | 1997.65 | 1997.80] | Gel | _ | 150 | | | 1997.90 | CrI | 48 | 600 | | | | | | |